Far Western University Faculty of Engineering

Bachelor of Engineering (Civil) Elective Course

Course Title: Advance Environmental Engineering	Credit: 3
Course Code: CE 4520	Number of lecture/week: 3
Nature of the Course: Theory	Tutorial/week: 1
Year/Semester: Fourth/VII or VIII	Total hours: 60

1. Course Introduction:

The course is aimed to provide the basic knowledge of advance environmental engineering including air pollution, water pollution, life cycle and environmental assessments and to promote the achievement of Sustainable Development Goals (SDGs) from the perspective of advance environmental engineering works, through analyzing and finding the interrelationship between the advance environmental engineering works and the related specific target for each goal.

2. Course Objectives:

At the end of this course the student should be able:

- To understand the ecology, environment and its constituents, environmental engineering, environmental pollution and strategy for environment management.
- To know about the sources of air pollution and its appropriate control technologies, ambient air quality and emission standards.
- To understand the water pollution, wastewater characteristics and its treatments, industrial wastewater sources, its effects, treatments, drinking water and effluent standards.
- To understand the concept of life cycle assessment, types of environmental assessments, its benefits, impacts, environmental protection measures and management plan and preparation of assessment report.
- To understand about the sustainable development and the contribution of advance environmental engineering works on SDGs achievement.

Specific Objectives	Contents
 Familiar with the concept, emergence and importance of the SDGs Familiar with enviornmental related SDGs 	 UNIT 1: Concept of Sustainable Development and Environment-related SDGs (3 hours) Emergence of the SDGs. The 17 SDGs, Targets, Indicators Role of Environmental Engineering in achieving the SDGs
	Tore of Environmental Engineering in demoving the SDOS

• Understand the ecology, environmental engineering, environment pollution and projects impacts on enviornment	 UNIT 2: Introduction to Enviornmental Engineering (6 hours) Concept of ecology, definition of Environment and its constituents Definition of Engineering, Environmental Engineering Impact of engineering projects on the environment Environement pollution, monitoring of pollution Concept of productivity, environmental health, pollution cost Strategy for a livable environment, international institutions for environmental management
• Understnd about sources, classification, effects of air pollution and meteorological parameters	 UNIT 3: Air Pollution and Meterology (8 hours) Definition, sources and classification of air pollution Effects of air pollution on human health, plants, materials, properties, aesthetic value and visibility Meteorological parameters, Wind roses (diagrams), emperature lapse rates and stability, dispersion of air pollutants, stack height calculation, the Gaussian plume model
 Understand pollutants monitoring, control techniques of particulate and gaseous, and control measures of indoor air pollution Know the contribution of the management of air pollution that can make to meeting the SDGs 	 UNIT 4: Air Pollution Monitoring and Control (8 hours) Monitoring of pollutants, ambient monitoring, stack monitoring, stack emission monitoring, analysis of air pollutants, high volume sampler Principles and techniques for control of particulate and gaseous emissions. Control of Autoexhaust emission Indoor air pollution control measures Ambient air quality standards Vehicle Emission standards Contribution of the management of air pollution can make to meeting the 17 SDGs

	UNIT 5: Water Pollution (8 hours)
 Understand the water pollution, natural process of purification, standards, characteristics of wastewater, its treatment and deisgn. Know the contribution of wastewater treatment into SDGs 	• Introduction classification of water pollutents quality of
	UNIT 6: Industrial Wastewater (8 hours)
 Understand eutrophication and its detection Understand sources, characteristics, effects, treatment options and effluents of industries 	 Wastewater impacts to lakes, eutrophication of lakes, Measurement and detection of eutrophication Wastewaters from some typical industries: sources, characteristics, effects, treatment options and effluents-Leather tanning, dairy, sugar and distilleries, pulp and paper, pharmaceutical, textiles, steel plants, thermal power plants, fertilizer, soap and detergents, cement.
 Know environmental impact assessment its necessity, principles, legal provisions, methods, impacts, management plan and preparation of EIA report Know the contribution of EIA on SDGs achievement. 	 UNIT 7: Environmental Impact Assessment (EIA) (10 hours) Concept of Enviornmental Assessments (EAs) Types of EAs (BEA, IEE, EIA) EIA benefits, principles, legal provisions and its steps Base line data collection, Impact identification, prediction and evaluation. Enviornmental Protection Measures (EPMs) Preparation of Environmental Management Plan (EMP) Preparation of EIAs of a project EIA is a tool for achieving the SDGs Examples: What percentage of forest in the catchment area of the proposed project will be lost due to the project? And what measures are proposed to replant trees to offset those lost? (SDG 15.1.1) Provide a detailed EMP on how all waste on the proposed project will be managed with particular emphasis on recycling. (SDG 12.5.1)

	UNIT 8: Environmental Management Systems (9 hours)
• Understand of life cycle	 Introduction to sustainability concepts and Life Cycle
analysis for sustainability	Assessment (LCA), LCA methodology and its components,
assessment, environmental	life cycle inventory and life cycle impact assessment Design for sustainability, sustainable engineering design
management and	principles, enviornmental cost analysis, eco-labelling, Green engineering, green building and green energy
environmental standards.	concepts and management International Environmental Standards: ISO 14001

- 1. Peavy H.S., Rowe D.R. and Tchobanoglous G. *Environmental Engineering*, McGraw Hill.
- 2. Eckenfelder, W. W, Davis L. F, and Andrew J. E. *Industrial water quality*, McGraw-Hill Education, 2009.
- 3. Rao C. S. Environmental Pollution Control Engineering, New Age International, 2006.
- 4. De Nevers N. Air Pollution Control Engineering, McGraw Hill
- Longhurst, J., Barnes, J., Chatterton, T., De Vito, L., Everard, M., Hayes, E. N. D. A., ... & Williams, B. Analysing air pollution and its management through the lens of the UN sustainable development goals: A review and assessment. WIT Trans. Ecol. Environ, 2018.
- 6. Bishop P.L. *Pollution Prevention: Fundamentals and Practice*, McGraw Hill International, 2000.
- 7. Metcalf L., Eddy H.P. and Tchobanoglous G. *Wastewater engineering: treatment, disposal, and reuse.* McGraw-Hill.
- 8. Garg S.K. Environemntal Engineering (Vol. I)Waster Water Engineering, Khanna Publishers.
- 9. Rao M.N. and Dutta, Waste Water Treatment, Oxford and IBM Publications Ltd.
- 10. Birdi G.S. and Birdi J.S. *Water Supply and Sanitary Engineering*, DhanpatRai Publishing Company.
- 11. Obaideen K., Shehata N., Sayed E.T., Abdelkareem M. A., Mahmoud M.S. and Olabi A.G. *The Role of Wastewater Treatment in achieving Sustainable Development Goals* (SDGs) and Sustainability Guideline. Energy Nexus, 2022
- 12. Khadka, R.B., Gorzula, S., Joshi, A.R., Guragain, S., and Mathema, A.J. *Environmental Impact Assessment: Processes, Methods, and Practices in South Asia (Bangladesh, Bhutan, India, and Nepal).* School for Environmental Management (SchEMS) and Institute of Environment and Development: Research and Capacity Building Initiatives (IED/RCBI), Kathmandu, 2013.
- 13. Act, Regulations, Guidelines of Government of Nepal on EIA [such as EPA, EPR]
- 14. Curran, M. A. ed. Life cycle assessment handbook: a guide for environmentally sustainable products. John Wiley & Sons, 2012.
- 15. UN, *Sustainable Development Goals*. <u>http://www.un.org/sustainabledevelopment/</u> sustainable-development-goals/

Far Western University

Faculty of Engineering

Bachelor of Engineering (Civil)

Course of Study

Course Title: Infrastructure for Sustainable Development	Credit: 3
Course Code:CE4540	Number of Lecture/week: 3
Nature of Course: Theory	Tutorial/Week: 1
Year/Semester: Fourth/VII or VIII	Total hours: 60

Context and Need: Sustainable development goals (SDGs) are the global agenda agreed by the member nations of the United Nations. SDGs set a common framework of development, for achieving prosperity in harmony with nature/environment, by focusing on five dimensions, namely, people, prosperity, planet, partnership and peace. Therefore, SDGs are to be internalized within the mainstream development activities. The crux of SDGs is to strike a balance between development and environment, which is extremely challenging given its uniqueness across different countries. A standard template of strategies or guiding principles cannot be replicated across different locations. Each country should define and realize its own state of balance and the development professionals working for the infrastructure construction in Nepal should realize the state of balance deemed appropriate for Nepal. The Far Western University realizes this unique need of the country, and develops this new course on "Infrastructure for Sustainable Development" for its civil engineering students.

Learning Objectives: This course aims to familiarize the students about the concept of Sustainable Development, SDGs, and Sustainability. Students will acquire both theoretical and practical knowledge enabling them to generate an in-depth analysis of relevant case studies as well as practical experiences using relevant data and tools. It highlights the importance of a sustainable approach for infrastructure development and prepares students to find appropriate ways of infrastructure development for contributing to the attainment of the SDGs. The course will teach students to perform basic analysis of carbon footprint and the life cycle assessment.

Specific Objectives	Contents
To be familiar with the	UNIT 1: INTRODUCTION [3 hr]
modern day development	• Broader perspectives on development discourses,
trend and its toll on the	development aspirations, infrastructure construction,
environment	economic prosperity, and human development
	• Environmental concerns with development discourses - The
	Earth Summit; greenhouse gas emissions; global warming
	and climate change
To be familiar with 17	UNIT 2: SUSTAINABLE DEVELOPMENT GOALS (SDGs)

SDGs and memorize at	[6 hr]
least 6 of them.	
least 0 01 them.	• Millennium development goals (MDGs) as the predecessors
	• The 17 SDGs; Targets; Indicators
	• Integration and internalization of SDGs on development
	initiatives
	• Exercise to identify the relevant SDGs during the appraisal
	of an infrastructure project
To be adept with the SDG	UNIT 3: SDG ROADMAPS, PROGRESS, AND
Roadmap of Nepal by	CHALLENGES [6 hr]
NPC.	• Worldwide progress and prospects
NIC.	
	• SDG Roadmap and its localization with specific focus on
To understand the	Nepal
challenges of SDG	 Challenges - planning and periodic monitoring;
attainment	implementation skills and capabilities; expenditure capacity;
	investment projection (for SDGs and for infrastructure
	development component) and securing funds; prioritization;
	interdependence, synergy and conflicts of the goals and
	indicators; climate change context; optimal development (a
	holistic viewpoint towards environment).
To develop the conscience	UNIT 4: SUSTAINABLE INFRASTRUCTURE PLANNING,
1	
to become a civil engineer	DEVELOPMENT, AND MANAGEMENT [6 hr]
connected with the people,	• Conceptualizing sustainability in infrastructure planning
society, community and	context – Guiding principles for sustainable engineering
environment.	• Sustainable infrastructure planning: concept; alignment with
	the national roadmap and the SDG targets; holistic and
To develop the ability to	specific view points for sustainability
recognize any	• Sustainable infrastructure development: Best practices and
development project as a	poor practices for selected civil infrastructure (i.e., Housing,
unique initiative and to	Transportation, Water Resources/Hydropower, Parks,
1	Cultural Heritages and Urban Infrastructure)
evaluate it for the specific	6
circumstance	• Sustainable building and infrastructure rating systems
To be thoughtful on the	UNIT 5: SUSTAINABLE USE OF RESOURCES [9 hr]
optimum use of natural	• Water resources: Hydrology, water demands, water
resources and have the	conservation and sustainable water use
ability to make the best	• Energy: energy sources (e.g., fossil-based, biomass, hydro,
choice in a sustainable	wind, solar and hydrogen), various uses of energy
way	(including lighting, cooking, heating/cooling, transportation,
5	etc.); per capita energy needs and consumption pattern;
	Energy mix, energy conversion and energy density of
	various sources; Energy generation, transmission and
	distribution; global trends and future outlook of energy;
	Energy economy, energy security, cross border trading.
	• Land resources; biomass and forest resources; mineral
	resources and ores
	Natural construction materials
	• Exercise on option analysis, alternatives and optimization
To identify the poor	UNIT 6: SUSTAINABLE URBAN REGENERATION [6 hr]
practices and weaknesses	• Analysis of existing urban condition with sustainability
1	

in the existing urban infrastructure. To identify a sustainable solution for the identified problem To develop the ability to perform basic level of LC analysis of engineering projects	 perspective Improvement of existing urban system including buildings, settlement, transportation, recreation, restoration of water bodies, parks, open spaces and greenery Sustainable sewage, storm water and waste management with a emphasis on waste as a resources Principles of reduce, reuse and recycling, and circular economy UNIT 7: FUNDAMENTALS OF LIFE CYCLE ANALYSIS (LCA) [9 hr] Introduction The LCA methodology Environmental life cycle costing, social life cycle assessment and life cycle sustainability assessment LCA applications in engineering Carbon footprint and its calculation Exercise to perform LCA of various engineering processes and products
To develop the skill of evaluating engineering infrastructure from sustainability perspective with assessment of LCA and carbon footprint	 CASE STUDIES AND PROJECT WORK [15 Hrs] Infrastructure project case studies from literature including road, housing, urban development, water supply, river training projects (reflecting contents in Unit 1-7) Group work on theoretical project case studies with carbon footprint, LCA, rating system as applicable and out- of- thebox thinking: project work, report and presentation

REFERENCES

- Pollalis, S. N., Georgoulias, A., Ramos, S. J., and Schodek, D. (2012). *Infrastructure Sustainability and Design*. Routledge.
- UNCTAD. (2014). World Investment Report 2014: Investing in the SDGs: An Action Plan. United Nations Publication.
- NPC (2017). Sustainable development goals: Status and Roadmap 2016-2030. National Planning Commission, Government of Nepal.
- NPC (2017). Needs assessment, cost estimate and financial strategy for sustainable development goals. National Planning Commission, Government of Nepal.
- Ramjeawon, T. (2020). Introduction to Sustainability for Engineers. CRC Press.

Selected journal publications and institutional reports

Course Title: Environmental Impact Assessment	Credit: 3
Course Code: CE 4523	Number of lecture/week: 3
Nature of the Course: Theory	Tutorial/week: 1
Year/Semester: Fourth/VIII	Total hours: 60

1. Course Introduction:

Environmental Impact Assessment (EIA) is an important tool for public and private development and planning decisions toward creating a sustainable society. In this course, students learn about the fundamental concept of EIA, its procedure, acts/regulations and its historical process with several case studies. Scientific aspects such as identification, predictions and evaluation methods of impacts as well as democratic aspects relating to public participation will be explained. This course will also explore 'strategic environmental assessment' as new areas of EIA. In addition to lectures, presentations by students will also be conducted. The course is designed to teach the students of civil engineering stream about the functions of the various components of natural and manmade environment and their interaction with development activities.

The course is aimed at imparting the knowledge of EIA as relevant to various types of development projects. Students will be aware of prevailing practices of carrying out Brief Environmental Assessment/Study (BEA/S), Initial Environmental Examination (IEE) or EIA studies for different governmental, non-governmental organizations and international donor agencies. The course is also aimed to promote the achievement of Sustainable Development Goals (SDGs) from the perspective of BEA/S, IEE or EIA projects, through analyzing and finding the interrelationship between BEA/S, IEE or EIA and the related specific target for each goal.

2. Course Objectives:

At the end of this course, students should be able:

- To understand the concepts of Environmental Assessments (e.g. IEE, EIA) and prepare the environmental assessments reports for the successful implementation of the project.
- To understand the concept of sustainable development and the contribution of environmental assessments on SDGs achievement.

Specific Objectives	Contents	
Speeme Objectives	Contents	

• Familiar with the emergence and concept of the SDGs .	 UNIT 1: Concept of Sustainable Development and Environment-related SDGs (3 hours) Emergence of the sustainability, concept of SDGs. Environmental related SDGs, targets, indicators Environmental assessments (e.g., IEE, EIA) as a tool for achieving the SDGs.
 Know to examine the project that needs of EIA, IEE or BEA/S Understand screening, BEA/S and IEE 	 UNIT 2: Screening and Initial Environmental Examination (IEE) (4 hours) Introduction and objectives of screening Screening procedure: BEA/S, IEE or EIA Concept of BEA/S and IEE
 Understand the concept of EIA, its benefits, chronology of EIA in world and Nepal and EIA in development project. Understand National commitment with Environment. 	• Concept of Environmental Assessments (EAs) and impacts and their types
 Understand the purpose, importance, andprocess of scoping and TOR Know to prepare scoping report 	 UNIT 4: Scoping and Preparation of Terms of Reference (ToR) (4 hours) Objectives of scoping Scoping process Terms of Reference and its main components

	UNIT 5: Establishing the Environmental baseline (8 hours)
 Understand the environmental setting, purpose and importance of baseline Know the collection of baseline data 	 Introduction to baseline environment study Environmental parameters: physical, biological, socio- economic, cultural (environmental setting) Purpose of baseline data Methods of baseline data collection: Primary and secondary data collection (physical, chemical, biological, socio-economic, cultural environments) Importance of baseline data Challenges for environmental baseline development
	UNIT 6: Impact Identification, Prediction and Evaluation
• Understand how to identify, predict, evaluate impacts and know EIA report writing	 Techniques (7 hours) Methods of impact identification: Checklists, matrix, networks, overlay mapping, GIS, expert judgment Methods of impact prediction: Extrapolative, normative, mathematical/statistical models, GIS, field/laboratory experiments, expert judgment Impact evaluation technique Writing EIA report Numerical on impact prediction and evaluation
	UNIT 7: Environmental Protection Measures (EPMs)
• Understand about environmental protection measures and able to analysis and suggest EPM	 (6 hours) Introduction and principle of EPMs Types of EPMs: Mitigation measures, enhancement measures Implementation of EPMs SDGs related example: What percentage of forest in the catchment area of the proposed project will be lost due to the project? And what measures are proposed to replant trees to offset those lost? (SDG 15.1.1) SDGs related example: Provide a breakdown of the employment profile of the workforce by origin of worker, sex, age and disability and demonstrate how this will affect the employment rate in the district in which the project is located. (SDG 8.5.2)
 Know about monitoring and auditing of environment Know to prepare environmental management plan 	 UNIT 8: Management of EIA process (7 hours) Environmental Management Plan (EMP) SDGs related example: Provide a detailed EMP on how all waste on the proposed project will be managed with particular emphasis on recycling (SDG 12.5.1)

Know to review the EIA report	 Environmental Monitoring: Concept, principles, types, methods SDGs related example: How will the proposed new urban expressway affect the annual mean levels of fine particulate matter (e.g. PM_{2.5} and PM₁₀) in the city in which it is being developed (population weighted)? (SDG 11.6.2) Environmental Auditing: concept, physical, biological, socio-economic aspects EIA Report Review and Decision Making
	 Stakeholders Stakeholder Consultation and Public Participation SDGs related example: Did the stakeholder engagement process include meaningful consultation with the local affected parties, giving all groups (based on age, sex, disability) an equal opportunity to be heard and included in decision-making? (SDG 16.7.2)

Tutorials:

Numerical exercises, air pollution, water pollution and land erosion, etc.

Practical/Project work:

Prepare Timelines of EIA, Prepare Environmental Setting table, Prepare scoping Documents, Environmental Management Plan, Environmental Monitoring Plan, Environmental Auditing Plan, Review of EIA Report, Process of stakeholder consultation and public participation

Case Studies: Case studies of some projects in which EIA studies have been carried out.

- 1. Canter L. W. Environmental Impact Assessment, McGraw Hill, 1996.
- Khadka, R.B., Gorzula, S., Joshi, A.R., Guragain, S., and Mathema, A.J. Environmental Impact Assessment: Processes, Methods, and Practices in South Asia (Bangladesh, Bhutan, India, and Nepal). School for Environmental Management (SchEMS) and Institute of Environment and Development: Research and Capacity Building Initiatives (IED/RCBI), Kathmandu, 2013.
- 3. Upreti, B. K. *Environmental Impact Assessment: process and practice*. Published by Uttara Uprety, Koteshwor, Kathmandu, 2003
- 4. IUCN/Nepal, *EIA Training Manual for Professionals and Managers*. Published by IUCN/Nepal, 2003
- 5. Act, Regulations, Guidelines of Government of Nepal on EIA [such as EPA, EPR]
- 6. International Treaty, Commitment, Declaration, etc. related to Environment
- 7.
 UN,
 Sustainable
 Development
 Goals.

 http://www.un.org/sustainabledevelopment/ sustainable-development-goals/

Course Title : Air Pollution Engineering	Credit : 3
Course Code : CE 4521	Number of lecture / week: 2
Nature of the Course : Theory	Tutorial /week : 1
Year /Semester : Fourth/VII or VIII	Total hours: 45

1. Course Introduction:

This course is aimed to focus the fundamental knowledge of air pollution, its sources, classification, effects, impacts, sampling and measurement of pollutants, mitigate applying the engineering technology and norms and to promote the achievement of Sustainable Development Goals (SDGs) from the perspective of air pollution engineering projects and works, through analyzing and finding the interrelationship between air pollution engineering projects and works and the related specific target for each goal.

2. Course Objectives :

At the end of this course the student should be able:

- To understand the basic concept, sources, causes, effects and impacts of air pollution, sampling and measurement of pollutants and their controls by applying appropriate technology and norms.
- To get an insight into the national and international legislative framework on air quality.
- To understand the concept of sustainable development and contribution of air pollution engineering works on SDGs achievement.

Specific Objectives	Contents
 Familiar with the concept, emergence and importance of the SDGs Familiar with air pollution related SDGs 	 UNIT 1: Concept of Sustainable Development and Air Pollution related SDGs (3 hours) Emergence of the SDGs The 17 SDGs, targets, indicators Broad linkages between SDGs and Air pollution

 Understand structure, composition and importance of the atmosphere and its constituents Understand the sources and classification of air pollutants Understand air pollution of Nepal and aboard 	 UNIT 2: Introduction to Atmosphere and Air Pollution (5 hours) Structure and composition of the atmosphere Importance of the atmosphere Definition of air pollution, sources, classification and properties of air pollutants Factors affecting air pollution Major air pollution episodes and lesson learnt State of air pollution in major cities: Nepal and World Concept of Indoor, Vehicular, Industrial air pollution and Hazardous air pollutants or radioactive pollutants Introduction on Green House Gases (GHGs), Total Suspended Particulates (TSP), Black carbon, and others.
• Understand the effects of air pollution on human, animals, visibility, agricultural production, local and global environment.	 UNIT 3: Effects of Air Pollution (4 hours) Effects of air pollution on human health, plants, animals, materials, properties, aesthetic value and visibility. Global Effects: Global warming, Ozone layer depletion, Snow melt, Rise in sea level, Climate change and Impacts on economy.
• Understand the sampling and measurement of air pollutant	 UNIT 4: Air Pollution Sampling And Measurement (4 hours) Pollutant sampling and measurement Ambient air sampling and stack sampling Collection of gaseous and particulate pollutants Analysis of air pollutant High volume sampler etc.

	UNIT 5: Air Pollution Control Technologies and
 Understand the control technologies of particulate and gaseous pollutants. Understand the causes of air pollution inside kitchens and to get the real solution to minimize the air pollution 	 Techniques (6 hours) Principles and techniques for Control of particulate emission: Settling chambers, Cyclone separators, Wet collectors, Fabric filters, Electrostatic precipitators. Principles and techniques for Control of gaseous emission: Adsorption, Absorption, Combustion Auto Exhaust: Catalytic converters Use of ventilation or alternatives to exit gases from indoors e.g. Kitchens and others Control measures
 Understand national and international policies, standards, agreements and guidelines to maintain the air quality Understand EU policies targeting air pollution and the reduction of its impacts contribute directly or indirectly to the achievement of SDGs 	 UNIT 6: Air Pollution Policies and Standards (8 hours) National Ambient Air Quality Standards: Nepal, India, China, Japan, USA, and WHO Government Plan and Policy for National Ambient Air Quality Standard Vehicle Emission Standards Government Air Pollution Monitoring/ Forecasting Plan and Policies National Transport policy National Petroleum Product Act for quality fuels Agreement in between Government of Nepal and UN and other allies to follow the Environment protection norms EU policies targeting air pollution and the reduction of its impacts contribute directly or indirectly to the achievement of SDGs 1, 2, 3, 6, 7, 8, 9 11, 12, 13, 14 and 15, specifically.

	UNIT 7: Tutorial (15 hours)
 Explore basic ideas about the existing local and global air pollution problems and their mitigation Learn how to prepare the case study, proposals, articles and papers about the research finding Know the contribution of the management of air pollution that can make to meeting the SDGs 	 Group based case study (to investigate the root causes, sources and policy based , technical based solution) Prepare the proposal for the mitigation of air pollution (in group) Collect the air pollution data and prepare articles related to pollution and finally present the paper (in group) Collect air pollution data of Nepal and Abroad and compare them and finally present the paper (in group) Review the contribution of the management of air pollution and finally present the paper (in group)

Prescribed Text:

Davis, Wayne T., Joshua S. Fu, and Thad Godish. Air Quality. CRC Press, 2021.

- 1. Srivastava, K. P. An Introduction to Environmental Study, Kalyani Publishers, 2001.
- 2. Pandey, G. N. Environmental management. Vikas Publishing House, 1997.
- 3. Adhikari, A.P. Urban and environmental planning in Nepal: Analysis, policies and proposals, 1998.
- 4. Rao C. S. Environmental Pollution Control Engineering, New Age International, 2006.
- 5. Longhurst, J., Barnes, J., Chatterton, T., De Vito, L., Everard, M., Hayes, E. N. D. A., ... & Williams, B. Analysing air pollution and its management through the lens of the UN sustainable development goals: A review and assessment. WIT Trans. Ecol. Environ, 2018.
- 6. Noel de N. Air Pollution Control Engineering, Third Edition, Waveland Press, 2016.
- 7. State of Environment of Nepal, Ministry of Population and Environment, Government of Nepal, 2001
- 8. Intergovernmental Panel on Climate Change Reports, 2014
- 9. Environmental Statistics of Nepal, 2015
- 10. UN, Sustainable Development Goals. <u>http://www.un.org/sustainabledevelopment/</u> sustainable-development-goals/
- **11.** Research articles will be advised as required.

Course Title : **Water Resources Management** Course No : **CE 4510** Nature of the Course : Theory + Tutorial Practical : 1.5 / 2 Hour each week Year : Forth Semester : Seventh/ Eighth Credit : 3 Number of Hours per week : (3+1) Total Hours : 45 Level : Bachelor of Engineering (Civil)

1. Course Introduction:

This course is advance course for Bachelor students. This course develops the technical as well as managerial skills of students. The pre-requisite for this course is the students should know the basic knowledge in fluid mechanics, hydraulics engineering, Hydrology, Irrigation, Water Supply and Sanitary Engineering prescribed for bachelor level. This course aimed to deliver the knowledge to the Civil Engineering Student of Forth Year Second Part (i.e. VIII part) at Bachelor Level about the application of fluid mechanics, hydraulics engineering, Hydrology, Irrigation, Water Supply and Sanitary Engineering and some managerial skills about implication of water resources available. This course aims to deliver the knowledge to the students for demand analysis, planning, design, operation, maintenance and management of available Water Resources.

2. Course Objectives:

At the end of this course the students should be able -

- To understand the fundamental terms used in Water Resources Planning and Management.
- To know the behavior of Water Resources Engineering in management and its behaviour.
- To know the problems arise in Water Resources Planning.
- To know the Overall system design of Water Resources.
- To know the act, rule and regulations in Water Resources

Spe	cific Objectives	Conten	its	
\succ	To know the concepts of	Unit 1.	Introduction	(2
	Water Resources	Hour)		
	management	1.1	Global as well as Local Water Sources	
\succ	To know Concept of System	1.2	Introduction to Water System Engineering	
\triangleright	To know the Water	1.3	Scope and Approach of Water Resources Manag	gement
	Management situation in	1.4	Water Resources Management in Nepalese cont	
	Nepal		its importance	
	1		I.	
\succ	To Understand the system	Unit 2	. Issues and the System Planning Approach	(7
	planning objectives			ours)
\succ	To know Importance of	2.1	Objectives of System Planning	,
	Environment and water	2.2	Water System Dynamics	
	dynamics and its planning	2.3	Environment and Resources	
\triangleright	To know the Real Water	2.4	Issues in Water Resources Development	
	Resources Project Problems	2.5	Planning Morphology and Approach	
	and solution approach	2.6	Water Resources System Studies and its constra	ints
		2.7	Trends in Water Resources Management	
		2.8	Alternatives of Water Resources Management	
		2.9	National level Water Resources Project – A Cas	e
			Study	
\succ	To know the objectives of	Unit 3	Objectives and Evaluation Criteria	(4
	technical, sociologic water	Hours)	•	,

	• • • •		
	issues and its appraisal	3.1 Technological Objectives	
~	handling	3.2 Socio-Economic Objectives	
	To know the nature of multi-	3.3 Practical Project Appraisal	valuation
	objective problems in water	3.4 Environmental-Ecological Objectives and E	valuation
	resources	Criteria 2.5 Multi objective Amelyzia	
		3.5 Multi-objective Analysis	
≻	To know hydrological	Unit 4 . Hydrologic Input Analysis	(6
	analysis in different types of		Hours)
	water sources (e.g. surface	4.1 Watershed Functional Analysis	
	source, ground source etc.)	4.2 Soil Sub-system Analysis	
\triangleright	To understand the Computer	4.3 Groundwater Sub-system	
	model and its uses in water	4.4 Stream flow generation	
	resources problem handling	4.5 Simulation of a Basin using Computer Mod	el
\triangleright	To know the types of water	Unit 5 . Demand analysis	(5
ŕ	demands and their nature and		Hours)
	demand addressing methods	5.1 Types of Water Resources Demand	110415)
	aemana aaaressing menicas	5.2 Demand Projections and Policy Formulation	ı
		5.3 Water Supply Demand for Human Settleme	
		International Standard for drinking water	
		5.4 Agricultural Demand	
		5.5 Hydro-electric Power Demand	
		5.6 Industrial Demand	
		5.7 Navigation, Waterways and Recreation Den	nand
\triangleright	To understand the system and	Unit 6 . System Elements and Planning	(5
~	its elements uses	Hours)	
	To know the system handling	6.1 Water Conveyance and Distribution System	S
\triangleright	approach for reservoir system To know the real case	6.2 Reservoir Systems and Applications6.3 Conjunctive Surface and Groundwater Deve	lommont
	handling methods	6.4 Practical example of System planning – A c	
	handling methods	0.4 Theorem example of System planning Tree	use study
\triangleright	To know the Water Quality	Unit 7 . Water Quality Management Planning	(6
	Management issues and its		Hours)
	solution approach	7.1 Nature of the Problem	
\succ	To know the salinity and its	7.2 Management Issues	
	effects in Agriculture	7.3 Water Quality Dynamics	
\triangleright	To know the river basin water	7.4 Water Quality Description	
	quality	7.5 Water Quality Screening Model	
		7.6 Quality Management by Treatment	
		7.7 Flow Augmentation	
		7.8 Wastewater Transport	
		7.9 Artificial Aeration Methods	
		7.10 Irrigation Related Salinity Management	
		7.11 Management of River Basin Water Quality	
>	To know the water	7.11 Management of River Basin Water Quality Unit 8 . Multipurpose Development Issues	(5
	To know the water management methods for		(5 Hours)
	management methods for	Unit 8 . Multipurpose Development Issues	(5 Hours)
	management methods for multipurpose development	Unit 8 . Multipurpose Development Issues 8.1 Flood Management	Hours)
>	management methods for	Unit 8 . Multipurpose Development Issues	Hours)

and its management	8.4 Inland Water Transportation and Planning	
To know the sedimentation	8.5 Watershed management	
and its affects in water	8.6 Sedimentation and remedies	
resources		
To know the difference	Unit 9 . Policy Issues	(5
national and international		Hours)
policies in water resources	9.1 System Planning Policy Issues	
sector	9.2 Technological Policy Issues	
> To know the water quality	9.3 Water Resources Act, Rule and Regulation	
management policies	implemented in Nepal (Latest)	
available and adopted	9.4 Water Supply Policy Issues	
*	9.5 Agricultural Policy Issues	
	9.6 Water Quality Management Policy Issues	

7 Practical / Tutorials :

The sufficient Tutorials will be performed during the course.

Field Visit :

One week field visit should be carried out to the students in suitable water resources projects (Water Supply, Irrigation, Hydropower and Industrial Sector).

After the field visit, students should submit the field visit report which reflects the detail description of Power plants they visited.

Evaluation System

External Evaluation	Marks	Internal Evaluation	Weightage	Marks	Practical	Marks
End Semester	60	Assignments	50%	15		
Examination		Quizzes				
(Details are given at		Presentation				
the end)		Group work				
		Mid-term Exam	50%	15	Field Reports	10
Total External	60	Total Internal		30	Total	10

External Evaluation

End Semester Examination

It is a written examination at the end of the semester. The questions will be asked covering all the units as per their allocated lecture duration. Following table shows the question model with full marks.

Full Marks: 100, Pass Marks: 45, Time: 3 hours

Nature of Questions	Total Questions to be asked	Total Questions to be Answered	Total Marks	Weightage	External Exam Marks
Numerical and theory mixed type Questions	10	10	100	100%	60

Note: Each student must secure at least 45% marks in internal evaluation in order to appear in the end semester examination.

The students unable to secure 45% marks in internal examination, will not be eligible to appear in the End Semester Examination

Internal Evaluation

Assignments

Each Student must submit the assignments individually within specified time.

Quizzes

Pre-informed and surprises quizzes / tests will be taken by the respective subject teachers at least two times within each semester. The students will be evaluated accordingly.

Presentation and Group work

Depending upon the topics taught in the class, respective subject teacher may form the group and ask for group presentation. In this presentation, student performance will be marked accordingly.

Mid-Term Exam / Minor Tests

The midterm written examination will cover all the topics that already taught at the time of examination date. It will be evaluated individually.

Practical / Tutorial Work and Field Visit

All prescribed practical/ Tutorial works should be done as per class routine. Each Student must submit the Lab / Tutorial report within prescribed time frame. And Lab/ Tutorial report will be evaluated individually for marking. At the end of field visit, students should carry out the field report in specified format and it will be evaluated as necessary.

Instruction Techniques

- Lecture and discussions
- Group work and Individual assignments
- Class tutorial
- Assignments at home
- Term paper writing
- Presentation by students
- ➢ Case study
- Quizzes
- Guest Lecture

Note: Students are advised not to leave any classes at optimum. If a student does not attend the class/s, it is his/her sole responsibility to carryout self study the topics that taught at his/her absence.

- 1. Arceivala, S. J., and Asolekar, S. R., "Wastewater Treatment for Pollution Control and Reuse", Tata McGraw-Hill, New Delhi, 2007.
- 2. Bhave, P. R., "Water Resources Systems", Narosa Publishing House, New Delhi, 2011.
- 3. Butler, D., and Memon, . A., "Water Demand Management", IWA Publishing, London, 2006.
- 4. Chaturvedi, M. C., "Water Resources System and Management", Tata McGraw-Hill, New Delhi, 2012.
- 5. Chow, V. T., "Open Channel Hydraulics", McGraw-Hill, New York, 1959.
- 6. Garg, S. K., "Irrigation Engineering and Hydraulic Structures", Khanna Publishers New Delhi, 2009.
- 7. Garg, S. K., "Water Supply Engineering", Khanna Publishers, New Delhi, 1977.
- 8. Linsley, R. K., and Franzini, J. B., "Water Resources Engineering", McGraw-Hill, New York, 1982.
- 9. Loucks, D. P., Stedinger, J. R., and Haith, D. A., "Water Resources Planning and Analysis", Prentice-Hall, Englewood Cliffs, New Jersey, 1981.
- 10. Mays, L. W., "Water Resources System Management Tools", McGraw-Hill, New York, 2005.
- 11. Punmia, B. C. and Lal, P. B.B., Jain, A.K. and jain A.K. "Irrigation and Water Power Engineering", Laxmi Publications, Delh , 2009.

Course Title: Analysis and design for Wind and Earthquake Effects

Credit: 3

Course Code: CE4502 Fourth / Seventh Number of lecture/week: 3 Year/Semester: Tutorial/week: 2

Level: BCE (Bachelor of Civil Engineering)

Total Lectures: 45 hrs

1. Course Introduction

The main aim of the first part of the course is to provideknowledge of wind characteristics and evaluation of wind load that should be considered for design of a building as a whole as well as elements of a building structure. It also includes evaluation of wind load for towers, wires, cables and bridge structure. In the second part of the course, earthquake characteristic as well as dynamic response of structure is described. Design earthquake loads evaluation techniques are also included in the second part.

2. CourseObjectives

At the end of the course the students should be able to

- Nature of wind and dynamic effect on structure
- Measurement of wind load on building and elements of a building
- Evaluation of wind force on sloped roof
- Wind load on tower and bridge
- Earthquake characteristics and choice of design earthquake
- Dynamic response of structure
- Determination of design lateral forces

3. Course Outline

Specific Objectives		Contents	Duration	
Part-A: Analysis and Design for Wind Load				
Wind characteristics	1.		4 hrs	
• Design wind pressure	2.	Wind pressure intensity2.1. Basic wind speed2.2. Design wind speed2.3. Design wind pressure	2 hrs	
Wind force on building	3.	 Wind loadon structures 3.1. Wind load on a building, walls, roof and other elements of building 3.2. Effect of medium and large opening on wind load and force coefficient 	6 hrs	

	3.3. Force coefficients, shielding factor and Gust factor	4 hrs
 Wind load on tower and bridge 	4. Wind load on tower and bridge4.1. Wind load on tower,	
	4.2. Force coefficients for wires, cables and towers4.3. Wind load on bridge superstructure and sub structure4.4. Gust factor, shielding factor and drag coefficient	
	Part-B: Analysis and Design for Earthquake Load	
 Earthquake characteristics 	 5. Earthquakes and wave characteristics 5.1. Characteristics of earthquake: magnitude, intensity and waves 5.2. Characteristics of earthquake accelerograms: Accelerograms, vertical acceleration, soil effects, directional effects, geographic amplification 5.3. Attenuation relationships 	6 hrs
 Design earthquake 	 6. Choice of design earthquake 6.1. Intensity and ground acceleration relationship 6.2. Probability of occurrence 6.3. Seismic risk, design limit states, economic considerations 	4 hrs
 Dynamic response of structures 	 7. Dynamic response of structures 7.1. Response of single-degree-of-freedom (SDOF) system to lateral ground acceleration 7.2. Elastic response spectra 7.3. Response of inelastic single-degree-of-freedom (SDOF) systems 7.4. Response of multistory buildings 	7 hrs
 Determination of earthquake force 	 8. Determination of design earthquake forces 8.1. Equivalent lateral force procedure 8.2. Model superposition technique 8.3. Dynamic inelastic time history analysis 	6 hrs
• Equivalent lateral force	 9. Equivalent lateral force procedure 9.1. First mode period of structure 9.2. Factors affecting the seismic base shear force: zone factor, importance factor, response acceleration coefficient, response reduction factor 9.3. Distribution of base shear over the height of a building 9.4. P-∆ effects in frame structures 9.5. Torsion effects 	4 hrs
 Lateral load resisting systems 	 10. Lateral load resisting systems 10.1. Structural wall systems: coupled wall, squat wall 10.2. Dual system	2 hrs

Note: Tutorial Classes may be added as per requirements.

References:

- 1. A.K.Chopra, Dynamics of Structures.
- 2. Jaikrishna&Chandrasekaran,Elements of earthquake engineering.
- 3. N. Subramanian, Design of Steel Structures, Oxford University Press.
- 4. Agrawal, P., Shrikhande, M. 2006. Earthquake Resistant Design of Structures, PHI Learning Private Limited, New Delhi (Reprint 2008)
- 5. T. Pauly& M.J.N. Priestley, Seismic design of reinforced concrete and masonry buildings, A Wiley Interscience Publication.

Evaluation scheme

The questions will cover all the chapters in the syllabus.

Far Western University

Faculty of Engineering

Bachelor of Engineering (Civil)

Course of Study

Course Title: Planning and Design of Building Services	Credit: 3
Course Code.CE 4503	Number of lecture/week: 3
Nature of the Course: Theory	Tutorial/week: 1
Year/Semester: fourth/ seventh or eighth (electives)	Total hours: 60

1. Course Introduction:

The course is aimed to provide the basic knowledge of Building Services and its Design.

2. Course Objectives:

At the end of this course student should be able:

- To understand the concept of Building Services
- To understand the types of Building
- To design different services for Building
- To Understand the regulatory environment in Building Services
- To Prepare and Understand Building Services Drawings.

Specific Objectives	Contents	
 Understanding Evolution of Shelter and Building and various services required. Understand the types of Buildings used and method of its classification 	 UNIT 1. Introduction 1.1.Building 1.2.Services 1.3.Building Services UNIT 2. Classification of Building(5 Here) 2.1 Residential Building 2.2 Educational Building 2.3 Institutional Building 2.4 Assembly Building 2.5 Business Building 2.6 Mercantile Building 2.7 Industrial Building 2.8 Storage Building 2.9 Emergency Shelter 	(2 Hours) ours)
• To be able to Design different services for Building	 UNIT 3. Design of Building Services 3.1 Mechanical System: 3.1.1 HVAC: Heating, Ventilation and 3.1.2 Site Drainage: Water, Drainage, 3.1.3 Plumbing: Water Distribution, W Facilities 3.1.4 Fire Protection: Water Supply, S Detection, Annunciation 3.2 Electrical System: 	Sanitary Disposal, Gas supply Vater Treatment, Sanitary

Specific Objectives	Contents3.2.1 Electrical Power: Normal, Standby, Emergency Power Supply and Distribution 3.2.2 Lighting: Interior, exterior, Emergency Light 3.2.3 Auxiliary: Telephone, Data, Audio and Video Sound 3.2.4 Operation System 3.2.5 Transportation: Elevators, Escalators, Moving Walkways 3.2.6 Processing: Product, Food, Services 3.2.7 Automation: Environmental Control and ManagementUNIT 4. Planning andRegulatory System of Building (6 Hours) 4.1 Building Codes 4.2 Bylaws 4.3 Provision of Central Government 4.4 Provision of Federal Government 4.5 Provision of Local Government 4.6 Concept of Land use. 4.7 Site Investigation. 4.8 Preparation of Design Documents and Approval	
 Understand the state regulatory system for building construction. To provide the concept of planning Buildings 		
 To be able to design Water Supply and Sanitary Components for Building Prepare As Built Drawing and Understand its Importance. 	 UNIT 5. Design and Layout of Building Services (12 Hours) 5.1 Water Supply Network in Building 5.2 Drainage and Sanitary Network in building 5.3 Solid Waste Collection in Building 5.4 Preparation of Detailed Construction Drawing with all Services 5.5 Necessity of As Built Drawing and Its Preparation 	

Prescribed Text:

 By David V. Chadderton, *Building Services Engineering*, Routledge Tyalor And Francis Group, London/ New York

2. Birdie, G.S. And Birdie, J.S, Water Supply And Sanitary Engineering, Dhanapat Rai & Sons Publishers, Nai Sarak, Delhi-110006, India.

3. Panchadhari, A.C., Water Supply And Sanitary Installations, New Age International Publishers Limited, And India.

4. Barry, R, The Construction Of Building (Volume 5) Building Services, Affiliated East- West Press Pvt. Ltd., New Delhi