Far Western University Mahendranagar, Kanchanpur Faculty of Science and Technology

B. Sc. First Semester Biology Group

Course Title: English Grammar and Composition Course No.: C. ENG. 111 Nature of Course: Theory Level: B. Sc. Year: First, Semester: First F.M.: 100 P.M.: 45 Credit: 3 Number of hours per week: 3 Teaching Hours: 48

(1). Course Introduction

This is a compulsory English course for B. Sc. students irrespective of their major subjects. The course exposes the students to the basic grammar that they require in their day-to-day academic settings at the undergraduate level. The grammar is introduced in context through the texts and further practice is provisioned through exercises. The course also helps students sharpen their reading and writing skills through various texts and composition exercises. Additionally, the course will also introduce critical thinking skills and they will be given opportunities to practice those skills in class through a variety of texts and tasks.

(2). Objectives

General objectives of this course are to:

- a) help students produce grammatically correct English
- b) develop writing skills for the academic work at undergraduate level
- c) expose them to the variety of reading texts
- d) give them practice in writing exercises
- e) introduce them to the academic vocabulary items used in academic settings
- f) develop in students the ability to think critically

(3). Contents in detail with Specific Objectives

Specific Objectives	Contents in Detail	
• Make sentences using appropriate tenses in speech	Unit 1: Grammar	(20 hours)
and writing	Tenses	
 Use modals in the correct syntagmatic patterns 	Modals	
• Supply correct prepositions, adjectives and adverbs	Determiners pronouns and noun phrases	
 Use the right verbs in the given contexts 	Prepositions, adjectives and adverbs	
 Use conditionals, clauses, questions in the given 	Verb structures	
contexts	Word formation	
	Conditionals, clauses, questions, indirect speech	
	Sentences and varieties of English	
• Predict and preview texts using a variety of	Unit 2: Reading	(10 hours)
strategies	Prediction and previewing skill	
 Read for main ideas 	Skimming skill	
 Read and comprehend different text types 	Reading for comprehension	
 Read for details 	Reading for details	
 Locate specific information in texts 	Scanning skill	
 Use graphic organizer to comprehend the texts 	Reading strategies	
 Identify source of information 	Reading sources	
• Develop and analyze paragraphs of different genres	Unit 3: Writing	(10 hours)
 Plan and make outline for writing 	Paragraph writing	
 Revise, edit and rewrite 	Preparing outlines	
Write summaries	Process writing: plan, draft, revise, edit	
 Write personal response to the texts 	Summary writing	
Write different letters	Responding to texts	
 Write different types of essays 	Writing letters	
	Writing essays	
 Use dictionary to find meaning 	Unit 4: Vocabulary	(10 hours)
 Identify different types of information in the 	Using a mono-lingual dictionary	
dictionary	Differentiate literal meaning and idiomatic meaning	
 Use academic words in their writing 	Learning selected words from the Academic Word Li	st (AWL)
 Find appropriate meaning of new vocabulary in 	Guessing meaning in contexts	
different contexts	Learning phrasal verbs	

 Use phrasal verbs in the given contexts 	4.6. Understanding the composition of words and phrase	ases
 Analyze the composition of words 		
 Explain ideas to demonstrate comprehension 	Unit 5: Critical Thinking	(5 hours)
 Reflect on the ideas in the texts 	Comprehension skills	
 Connect ideas across texts or readings 	Reflection on the ideas in the texts	
 Relate personal experience to the topic 	Connecting ideas across texts or readings	
• Synthesize information from texts and personal	Relating personal experience to the topic	
experience	Synthesizing skills	
 Evaluate experiences and events 	Evaluating experiences and events	
Consider social responsibility on various levels	Considering social responsibility on various levels	

(4). Evaluation System:

Undergraduate Programs				
External Evaluation	Marks	Internal Evaluation	Weightage	Marks
End semester examination	60	Assignments	10%	
(Details are given in the separate table at the end)		Quizzes	10%	
		Attendance	10%	
		Presentation	10%	40
		Term papers	10%	
		Mid-Term exam	40%	
		Group work	10%	
Total External	60	Total Internal	100%	40
Full Marks 60+40 = 100				

(I). External evaluation

End semester examination: It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Self-study
- Assignments
- Presentation by Students
- Term Paper writing
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a

student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

(5). References

- 1. Gramer, M.F. and Ward, C. S. (2011). Q: Skills for Success (Reading and Writing) 3. New York. Oxford University Press. (All Units)
- 2. Lloyd, M. and Day, J. (2011). Active Grammar, Level 3. Cambridge. Cambridge University Press. (Unit I)

(6). Dictionary

Hornby. A.S. (2010). Eighth Edition. Oxford Advanced Learner's Dictionary. Oxford: Oxford University Press.

Course Title: Fundamentals of Environmental Science TH Course No.: ENV 111

Nature of the Course: Theory Level: B.Sc. (Undergraduate) Year: First,

Semester: First Total Credit: 3 Instruction hours/week: 3

1. Course Description

The course intends to provide basic theoretical and practical knowledge on Fundamental aspects of Environmental Science. The course has been divided into five units. The first unit deals with Concept, development and scope of Environmental Science. The second unit focuses on Ecology, its associated components and Microbial Ecology. The third unit deliberates basic knowledge on Population and Community Ecology and its application. The fourth unit put emphasis on Concept and types of ecosystem and Pattern of energy flow in Ecosystem. While the fifth unit focuses on interrelation between Environment and Human Society and use of sociological and anthropological knowledge and practices on environmental conservation.

2. Course Objectives

The general objectives of the course are as follows:

- To acquaint the students with fundamental aspects of environmental science.
- To familiarize with environment and environmental science
- To give knowledge on ecology and ecosystem
- To develop analytical skills on Population and community analysis.
- To make familiar about the human interaction with environment

3. Specific Objectives and Contents

Specific Objectives	Contents
 Provide knowledge on concept, historical development, Scope and importance of Environmental Science. Familiarize with environmental science and its interrelation with other disciplines. 	Unit 1: Environment and EnvironmentalScience5 hrsDefinition, concept and perspectives; historicaldevelopment; objective, scope and importance;relationship between environmental science withother disciplines; environmental science inNepalese and global context
• Discuss about concept, branches and Scope of Ecology; relation between environmental science and ecology.	Unit 2: Ecology 10 hrs
 Describe about life supporting systems; ecological factors; limiting factors. 	Ecology: Definition, preview, branches and scope of ecology; relationship between ecology and environmental science; concept of ecosystem; life supporting systems; ecological factors; limiting
 Explain about food chain, food web, trophic structure and ecological pyramids 	factors; laws of limiting factors; ecological basics: terminologies, concept of food chain, food web, trophic structure, ecological pyramids; concept of niche and habitat

 Highlight on concept of niche and habitat Discuss Distribution of microorganisms in the environment; characteristics of bacteria, cynobacteria, actinomycetes, fungi, algae and protozoan and factors affecting growth of microorganisms. Provide Knowledge on microbial interaction and concept of bioremediation and biosensors. 	Microbial Ecology: Distribution of microorganisms in the environment: bacteria, cynobacteria, actinomycetes, fungi, algae and protozoan; factors affecting growth of microorganisms; air, water, soil and food microbes; microbial interaction; concept of bioremediation and biosensors; microbes and human health, Use of microbes as biofertilizer and biopesticides.
	Unit 3: Population and Community Ecology
 Describe Characteristic of population; theory of population growth and population dynamics. Discuss the concept, characteristics and structure of communities. Develop analytical skills on Population and community analysis. Explain the meaning of Species interaction; explain their types with examples and their importance. 	 10 hrs Population: Basic concept of population ecology; population characteristics; theory of population growth; population dynamics; population regulation. Community: concept, brief history, characteristics and structure; species interaction: positive and negative; linkage population, community and environment
 Explain the concept, meaning and different types of ecosystem. Describe characteristic features and components of ecosystems. Highlight the structure and functional aspects of pond and forest ecosystems Describe the meaning and mechanism of biogeochemical cycle. Discuss about the Energy flow process on ecosystem and its role in ecological balance. Explain meaning and concept of succession and trend of succession. Describe different types of productivity and its measurement techniques. 	Unit 4: Ecosystem Ecosystem: concept and types; terrestrial and aquatic ecosystems; structure and functional aspects of pond and forest ecosystems; biogeochemical cycle: gaseous, sedimentary and hydrological; energy flow; succession; productivity: primary and secondary

• Describe about development of human	Unit 5: Environment and Human Society
civilization and their socio-cultural perspective regarding environmental resources.	5hrs
• Explain about nexus population growth and environmental degradation.	Environmental resources and socio-cultural perspective; human civilization and resources;
• Discuss the use of sociological and anthropological knowledge and practices on environmental conservation.	nexus population growth and environmental degradation; use of sociological and anthropological knowledge and practices on
• Explain the meaning of environmental sustainability: approach and principles	environmental conservation; environmental sustainability: approach and principles;
• Highlight the environmental world views and ethics.	environmental world views and ethics

Text Books :

- 1. Miller, Jr. G. T. (2003). Living in the Environment: Wadsworth Publication.
- 2. Odum, E. P. (1996). Fundaments of Ecology: Saunders Company, USA

3. Sharma .P.D. Ecological and Environmental. Rostogi Publication, India **References:**

- 1. Cunningham, W.P & Cunningham, M.A. (2004). Principles of Environmental Science: Inquiry and Applications, Second Edition. Boston: Mc Grow Hill.
- 2. Kormondy, E. J. (1996). Concepts of Ecology: Prentice-Hall of India, New Delhi.
- 3. Odum, E. P. and Barrett, G. W. (2005). Fundamentals of Ecology, 5th Edition, Saunders Company, USA.

- 4. Richard T. (2008). Environmental Science, Toward a Sustainable Future, PHI (P) Limited, India
- 5. Santra, S.C. (2004). Environmental Science, New Central Book Agency (P) Ltd. India.
- 6. Sharma .P.D. Ecological and Environmental. Rostogi Publication, India
- 7. Francis A. (1982). Modern Sociological Theory: An Introduction, Oxford University Press, New Delhi
- 8. Pelczar M.J. 2010. Microbiology, An Application based approach, second reprint, 2010 ,Tata McGraw-Hill Co, New Delhi.

Course Title: Fundamentals of Environmental Science PR

Course No: ENV111 Year: First Semester: First Nature of Course: Practical

Total Credit: 1

Practical No.

- 1. Enumeration of floral and faunal diversity of terrestrial ecosystem
- 2. Measurement of population and community parameters: density, frequency, abundance, community composition, similarity index, species-area-curve, minimum number of sampling units, species diversity of vegetation and animals by quadrat method.
- 3. Measurement of primary productivity (using different methods)
- 4. Biological analysis of soil from grassland/cropland/forest ecosystems
- 5. Instrumentation and working principle: compound microscope, hot air oven, autoclave, incubator, biological safety cabinet, water bath and related instruments
- 6. Analysis of bacterial population (staining, enumeration)
- 7. Visit to nearby forest /grassland ecosystem to enumerate floral and faunal diversity
- 8. Visit to nearby health post/Municipality/DDC to assess the environmental administration and management system.
- 9. Visit to human settlement area for socio economic and cultural study and prepare a project report.

Some major points related to aforementioned practical:

1. Students have to carry out *one day field visit* to nearby national park/wildlife reserve for conducting practical number **1**, **2**, **7** and **9**. Since the field work is for complete academic purpose. For this purpose University will have to support students for necessary transportation cost. Total two separate field visits will be held. First field visit will address practical number 1, 2, 7 and second field visit will address practical number 9.

2. Students have to prepare a field report for practical no. 8 and 9 and submit during practical examination.

3. Students have to submit a field note book of all field visits during practical examination.

Course Title: General Microbiology, Microbial Structure, Physiology and Genetics Course No.: MIB111 Nature of Course: Theory Level: B. Sc. Year: First, Semester: First

1. Course Description

The course intends to enable the students to be acquainted with the scope and applications of microbiology. The aim of the course is to provide fundamental knowledge and basic practical skills on, taxonomy, Structure and physiology and genetics of bacteria, virus and fungi

2. Course Objectives

After the completion of the course the students will be able to understand

- the concept of the microbial world, classification schemes and the nomenclature of microorganisms
- scope and application of Microbiology, beneficial and harmful roles of microorganism, determinative characteristics of bacteria, animal viruses and fungi and protozoan parasites
- growth, physiology, metabolism, genetics and ecology of microorganisms and,
- They will be able to perform isolation, enumeration and conventional identification of Bacteria, Fungi and Virus.

Spocific Objectives	Contonts in Dotail
Te sing knowledge on kistern of and doubt	
 To give knowledge on history of and development of microbiology as a modern science To explain the differential characteristics of prokaryotic and eukaryotic microorganism To compare and contrast determinative characteristics of bacteria, viruses, fungi and protozoan parasites To discuss applications and scope of microbiology in other fields of modern science and technology 	Concept of the microbial world, differential characteristics of prokaryotic and eukaryotic microorganism and determinative characteristics of bacteria, viruses, fungi and protozoan parasites, Scope and application of microbiology, beneficial and harmful roles of microorganism, important discoveries related to development of microbiology, Discovery of microscope, Spontaneous generation theory, Germ theory of disease and other important recent discoveries
 To describe the Importance of aseptic techniques in Microbiology To explain the methods and procedure to be followed for the sterilization and Disinfection To describe principle of each of the physical and chemical methods used for removal and control of microorganism To explain and discuss Working principle of instruments and methods used for growth, recovery enumeration, isolation and identification and removal of microorganism To explain working principle of Hot Air Oven, Autoclave, Incubator, Laminar UV safety cabinet and Spectrophotometer 	Unit II: Handling and Control of Microorganisms(5 hrs)Importance of aseptic techniques in Microbiology.Principlesof sterilization and Disinfection, control of micro-organisms byTemperature, Irradiation, Ultrasonication, Filtration, Chemicals,Antibiotics and other chemotherapeutic agents, Working principleof Hot Air Oven, Autoclave, Incubator, Laminar UV safety cabinetand Spectrophotometer
 To explain importance, procedure and 	Unit III: Techniques of Isolation, Enumeration and Identification
 application of different bacterial staining techniques To explain instrumentation and working principle of Compound Microscope, Phase Contrast Microscope, SEM and TEM To explain methods of Bacteriological Culture Medium preparation To describe Techniques of Isolation and Enumeration and identification of Bacteria 	of Bacteria(5 hrs)Application of microscopy and staining in Microbiology: Types of microscope, Compound Microscope, Phase Contrast Microscope, SEM and TEM. Types of staining for bacterial identification and nature of dyes, Gram's staining, Negative staining, Flagella staining, Spore staining, Capsule staining, ZiehlNeelson staining.Types of Bacteriological Culture Medium, Techniques of Isolation and Enumeration of Bacteria i.e. streak plate technique, pour plate technique, spread plate technique, MF, MPN, DMC, Methods of anaerobiosis and Anaerobic of culture of Bacteria, Methods of

3. Specific Objectives and Contents

F.M.: 100 P.M.: 45% Credit: 3 Number of hours per week: 3 Teaching Hours: 45

		culture maintenance, conventional biochemical testing of Bacteria:
		Catalase test, Oxidase test, Urease test Sugar Fermentation, Indole
		test, MR. tests, VP test, TSI test, Nitrate reduction test, Starch
		hydrolysis, Lipid hydrolysis, Protein hydrolysis, techniques of
		motility determination and micrometry of Bacteria
•	Explain the Basis of Classification,	Unit IV: Classification, Growth and Physiology of Bacteria (12 hrs)
	Nomenciature and Characterization of	Basis of Classification, Nomenclature and Characterization of
	Systematic Bacteriology	Bacteria according to Bergey's Manual of Systematic Bacteriology.
•	Describe the Morphological characteristics of	Morphological characteristics of bacterial cell and fine structure
	bacterial cell and fine structure and function	and function of cell organelles. General Characteristics of common
	of cell organelles	Gram negative and Gram positive Bacteria,
•	General Characteristics of common Gram	Structure and functions of bacterial Cell wall, Cell membrane,
	negative and Gram positive Bacteria,	Capsule, Spore, Flagella, Pili and other cell organellae. Nutritional
	Structure and functions of bacterial Cell	types of bacteria i.e. photolithographic, chemolithotrophic,
•	Explain the entry of nutrients and kinetics of	photoorganotrophic, chemoorganotrophic. Entry of nutrients,
	bacterial growth and its measurement	Passive and Active transport. Microbial Growth, Growth Curve,
•	Discuss the factors affecting growth	Factors affecting the growth.measurementof the Bacterial growth
		and generation time calculation
•	To explain basic concept Enzyme regulation	Unit V: Microbial Metabolism (5 hrs)
	in prokaryotic and eukaryotic organism	Concept of Enzyme regulation in prokaryotic and eukaryotic
•	Discuss the process and biochemistry of	organism Jac Operon Metabolism of Carbohydrate and ATP
	Metabolism of Carbohydrate and ATP	production Mechanism and significance of Glycolysis TCA cycle
	production, and significance	fermentative nathways and electron transport system
		Ovidative and substrate level phosphorylation. Different types of
		formentative and substrate level phosphorylation, Different types of
	Evaluin concents of basterial and viral	Unit V/: Microbiol Constice (E brc)
-	genetics	Drekervetis general genetics code placmids concents of basterial
•	Explain the prokarvotic genome, genetic	and viral constitution and value of DNA & DNA bestevial recombination
	code, plasmids	and viral genetics and role of RNA & DNA, bacterial recombination-
•	To describe bacterial recombination	transformation, conjugation & transduction
•	To describe classification, reproduction and	Unit VII: Eukaryotic Microorganism (5 hrs)
	life cycle of common Yeast and Mold	Classification, Reproduction and life cycle of common Yeast and
•	To explain structure, lifecycle and general	Mold, Structure, Lifecycle and General properties of medically
	properties of medically important Protozoan	important Protozoan and Helminthic parasites
	and Heiminthic parasites	
•	To classify the general structure, properties	Unit VIII: Viruses: (5)
	of animal virus and Bacteriophages and	Taxonomy Classification General Structure, properties and
	rescue of common human virus	Classification schemes of animal Virus and Bacteriophages, Virus
		cell interactions and viral replication, Techniques of cultivation,
		identification, enumeration and rescue of common human viruses

(4). Evaluation System:

Undergraduate Programs				
External Evaluation	Marks	Internal Evaluation	Weightage	Marks
End semester examination	60	Assignments	10%	
(Details are given in the separate table at the end)		Quizzes	10%	
		Attendance	10%	
		Presentation	10%	
		Term papers	10%	40
		Mid-Term exam	40%	
		Group work	10%	
Total External	60	Total Internal	100%	40
Full Marks 60+40 = 100				

(I). External evaluation

End semester examination: It is a written examination at the end of the semester. The questions will be asked covering all

the units of the course.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination.

Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Self-study
- Assignments
- Presentation by Students
- Term Paper writing
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

5. Reference Books (MIB111 & MIB112)

- 1. Michael J. Pelczar, JR, E.C.S Chan, Noel R. Krieg, Microbiology, Tata McGraw Hill 5th edition, 1993
- 2. James G Cappucino and Natalie Sherman, Microbiology, A Laboratory Manual, Benjamin Cumings Inc. California, 4th edition, 1996
- 3. Madigan MT, MartinkoJM and Parker J. Brock's Biology of Microorganisms, 10th Edition, Prentice-Hall International (2004).
- Collins and Lynes Microbiological Methods C.H. Collins, Patricia M. Lyne, J. M. Grange, Butter Worth, Oxford, 7th edition, 1995
- David Greenwood, Richard CD, Slak John ForstPeuther, Medical Microbiology, ELBS, Churchill living stone, 16th edition, 1992
- 6. Bergey's Manual of Systematic Bacteriology, Volume 1 (2001), Volume 2 (2005), Volume 3(2009), Volume 4 (2009), Volume 5 (2009)
- 7. Bhatta D.R., Bacteriophages, Taxonomy, applications and research methods, Central department of microbiology, Tribhuvan University Kirtipur, ISBN 9789937218658, First edition 2009

Course Title: General Microbiology Lab Course No.: MIB111 Nature of Course: Practical Level: B. Sc. Year: First, Semester: First

Credit: 1 Number of hours per week: 3 Teaching Hours: 45

- 1. To operate and learn working principle of: Compound Microscope, Phase Contrast Microscope, SEM and TEM, Hot Air Oven, Autoclave, Incubator, UV safety hood and Spectrophotometer.
- 2. To perform: Simple staining, Gram's staining, Negative staining, Flegella staining, Spore staining and Capsule staining, Ziehl Neelson staining
- 3. To perform Catalase test, Oxidase test, Urease test Sugar Fermentation, Indole test, MR. tests, VP test, TSI test, Nitrate reduction test, Starch hydrolysis, Lipid hydrolysis, Protein hydrolysis,
- 4. To prepare Nutrient Agar, MacConkey Agar, Blood Agar and Potato Dextrose Agar
- 5. To Perform Isolation and Enumeration of Bacteria by Streak Plate technique, Spread Plate technique, Pour Plate technique, MPN and MF method
- 6. To determine the size of Bacteria by Micrometry technique
- 7. To determine the motility of Bacteria
- 8. To measure the Bacterial growth and calculate the generation time
- 9. To study effect of Temperature, pH, Salt concentration, Sugar concentration on microbial growth
- 10. To perform yeast and mold count and morphological identification of fungi
- 11. To perform culture of anaerobic Bacteria
- 12. To perform Antibiotic Susceptibility Testing of Bacteria by Kirby-Bauer disk diffusion technique
- 13. To Isolate Bacteriphages

Course Title: Information Technology Fundamentals Course No.: COM. 111 Nature of Course: Theory Level: B. Sc. Year: First, Semester: First F.M.: **100** P.M.: **45** Credit: **3** Number of hours per week: **3** Total Hours: **45**

(1). Course Introduction

Fundamental concept of Information technology, Computer systems, computer hardware and Software, input, output and storage devices, Binary system, programming languages, Data files and DBMS, fundamental concept of telecommunication, networking and internet and application of computer systems.

(2). Objectives

This course introduces fundamental concepts of Information Technology and Computer Systems.

(3). Contents in detail with Specific objectives

Specific Objectives	Contents
 What is data and information? Describe processing cycle. Describe what is hardware and software. Understand the evolution of computers, from refining of abacus to supercomputers. Understand the advancement in technology that has changed the way computers operate, efficient, size, and cost. Classify different computers, networks, software's Understand computer programming languages Classify different programming languages Understand the purpose of programming languages, facilities and various common examples. 	Unit I: Computer Concepts(4 Hrs)Ideas of Information, Information Processing and Data. The Data Processing Cycle. Examples of computer applications. Definition of Hardware; broad classes of computers (mainframe, mini and microcomputers) and networks. Computer programs. The computer as a programmable device. Classes of software (system and application). Programming languages: purpose, facilities and common examples.
 Understand the basic units of computer system (Anatomy of a Digital Computer) Understand how the basic digital computer is organized Describe the purpose of basic units of computer systems. 	Unit II: Computer Hardware(4 Hrs)The Central Processing Unit (Control Unit, Arithmetic and LogicUnit, Main Memory). Peripherals. The organization of a simplecomputer. The storage of programs and data. Data andControl paths in the computer (buses or highways). The Fetch-execute Cycle.
 Learn about the digital symbols, base. Understand with the coding schemes for the internal storage of characters. Understand what are on-line and off-line peripherals and data. Understand what is verification and validation of data. 	Unit III: Data(2 Hrs)Its Representation and Input: The Stages (collection, Preparation, verification, input methods). Input Devices and Media. On-line and Off-line peripherals. Verification and Validation methods.
 Familiarize with the various types of input devices along with their advantages, disadvantages, and applications. 	Unit IV: Input Devices(2 Hrs)Description of common input devices and media (such as keyboards, light pens, mice, magnetic stripe readers, punched media, magnetic and optical character recognition, mark readers), including simple physical principles of operation and practical applications.
 Familiarize with the various types of output devices to get desired result that may be in various from viz text, graphics, audio, and video; along with their advantages, disadvantages, and applications. 	Unit V: Output Methods, Devices and Media (2Hrs) Description of Displays, Printers, Plotters and Computer Output on Microfilm, including simple physical principles of operation and applications.

•	Understand the purpose of memory. Familiarize with the different category of memories, units of storage, access time. Discuss various types of primary and secondary memories with their storage organization.	Unit VI: Computer Storage(4 Hrs)Levels of storage: register, main and backing store. Units ofstorage (bytes and words) and capacities (Kbytes, Mbytes,Gbytes and TBytes). Definition of Access Time. Principles ofconstruction of magnetic tape drives, magnetic disc drives(floppy and hard drives), CD-ROM and DVD; recordable andrewritable compact discs: CD-R and CD-RW.
•	Learn about the binary number system and its advantages. Representation of various number systems, methods of number system conversions. Specify the rules to perform four principle arithmetic operations- addition, subtraction, multiplication, division of binary numbers with the help of suitable examples Define two types of real numbers viz. fixed point representation, floating point representation; within floating point(non-normalized and normalized) and their representations in computer memory Understand truth table and half-adder and full- adder operations	Unit VII: The Binary System (5 Hrs) Reasons for employing binary in a computer. The advantages and disadvantages of binary. The binary representation of numbers, characters and program instructions. Octal and Hexadecimal forms. Conversion between decimal, binary, octal and hexadecimal integers. Binary addition. Arithmetic overflow. Boolean logic. Simple AND, OR and NOT functions in two and three variables. Truth Tables. Half-adder and Full- adder logic. Logic diagrams.
• • • •	Discuss the prominent concepts to natural languages and computer languages. Acquaints with the different generations of programming languages with their advantages and disadvantages Elaborates the stages required during translation process (HLL, Assembly language to machine code). Understand the concept of visual programming language and platform independent. Outlook on the basic role of operating system in modern day computers; Learn about the different types of operating systems; Provide an overview of UNIX/LINUX operating system.	Unit VIII: Programming Languages (7 Hrs) Ideas of generations of programming languages: fourth generation (4GL), third generation ('high level'), assembly and binary machine code. Suitable applications for each level; comparisons between the levels. Translator programs - compilers, interpreters and assemblers; source code and object code. The concept of 'visual' languages. Java and the platform independence of its programs. The concept of operating system, functions of operating system, component of operating system, types of operating system. An overview of UNIX operating system.
•	Understand the concept behind database, file, record, field and character. Understand different types of data files and access methods.	Unit IX: Data Files(4 Hrs)Definitions of file, record, field and character. The concepts offile organization file access and file processing (updating). Themain types of data file such as master and transaction. Serial,sequential and indexed sequential organization. Direct accessand serial access. Updating sequential (tape or disc) files andindexed sequential files. Concepts of a simple database.
•	Explain the computer related terms, communication networks, and flow of information through different forms of channel. Understand the concept of serial and parallel transmission, different transmission modes.	Unit x: Simple Lelecommunications (4 Hrs) Serial and Parallel transmission compared. Simplex, Half- duplex and Duplex modes. Modems and Multiplexors. Simple Interfaces. Character Codes. Basic communications facilities and the concept of bandwidth.
•	understand the various applications of computer systems in different organizations in terms of purpose, hardware, data, processes, outputs, advantages and limitations.	Non-technical descriptions of Computer Systems (4 Hrs) Non-technical descriptions (purpose, hardware, data, processes, outputs, advantages and limitations) in banking, education, engineering, police, hospitals, credit reference, meteorology, airline reservation and stock control.
•	Describe computer networks and its various types. Discuss various computer network topologies.	Concepts of Local Area Networks, Wide Area Networks and

•	Understand the concept of WWW, Internet in terms
	of their uses, advantages and disadvantages.

- Learn about the different browsers and its uses.
- Learn various internet application viz email, FTP.
- Understand fundamental concepts of HTTP and its uses.

the Internet. Computer network topologies. The World Wide Web: the concept, its uses and possible disadvantages. Internet Service Providers. Web pages: construction and access; the role of Hypertext Markup Language (HTML) and Java. The concept of electronic mail and its basic uses. The basic functions of browsers.

(4). Evaluation System:

Undergraduate Programs							
External Evaluation	Marks	Internal Evaluation	Weight age	Marks	Practical	Weight age	Mark
End semester examination		Assignments	10%		Practical Note copy	25%	
(Details are given in the separate table at		Quizzes	10%		Viva	25%	
the end)	60			20			20
		Attendance	10%		Experimental	50%	
		Presentation	10%				
		Term papers	10%				
		Mid-Term	40%				
		exam					
		Group work	10%				
Total External	60	Total Internal	100%	20		100%	20
Full Marks 60+20+20 = 1	L00						

(I). External evaluation:

End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

External Practical Evaluation:

After completing the end semester theoretical examination, practical examination will be held. External examiner will conduct the practical examination according to the above mentioned evaluation. There will be an internal examiner to assist the external examiner. Three hours time will be given for the practical examination. In this examination Students must demonstrate the knowledge of the subject matter.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination.

Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Self-study
- Assignments
- Presentation by Students
- Term Paper writing
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

(5). Recommended Books:

- Longmans, Glossary of Computing Terms, British Computer Society, ISBN 0582-36967-3 or ISBN 0582-47594-5
- C S French , Computer Science, Fifth edition; Continuum; ISBN 0-8264-5460-7
- Geoffrey Knott and Nick Waites, **Computing**, Third edition; Business Education Publishers; ISBN 1901-888215
- Capron and Johnson, Computers: Tools for an Information Age, Eighth edition; Prentice Hall; ISBN 0-13-122723-8
- Ray Bradley; Stanley Thornes, Understanding Computer Science, ISBN 0-7487-4046-5
- Alexis Leon, Mathews Leon, Fundamentals of Information Technology, Leon TechWorld
- V. Rajaraman, Fundamentals of Computers.

Course Title: Systematic and Animal Diversity: Lower non- chordate

Nature of the Co	urse: Theory	Credit: 3
Course No.:	Zoo 111	
Level:	B. Sc.	Total hours: 45
Year:	First	Semester: First

1. Course Description

The course intends to enable the students to be acquainted with the basic concepts of systematics, classification of non- chordates and basic structures and function of invertebrate organism.

2. Course Objectives:

The general objectives of the courses are as follows.

- Understanding the zoological terms, concepts, facts, phenomenon & their interrelationships
- Develop the knowledge of animal science
- Impart knowledge on fundamental principles of animal systematic
- Classify the non-chordates up to Order with their examples.
- Know the functional anatomy of typical representative/s of each Phylum.
- Describe the systems: Polymorphism and Parasitism in non-chordates
- Understand the concept of Coelome, Nephridia and Metamerism in non-chordates.

3. Courses Contents

Specific objectives	Contents	
• Explain the principles of the	I. Systematics	(08)
taxonomy, zoological	1 Introduction to taxonomy,	
nomenclature.	2 Zoological nomenclatures;	
• Explain system of zoological	3 Taxonomic characters	
classification.	4 Zoological classifications	
	5. Criteria for classification of multicellular anim	nals
	II. Animal Diversity- Lower non- chordate	

•	Classify lower non-chordate	1. Classification of lower non- chordate(08)		
	phyla with typical examples	General characters and classification of Protozoa,		
	and distinctive features.	Porifera, Coelenterate, platyhelminthes, Aschelminthes		
		and Annelida up to orders with examples showing		
		distinctive / adaptive features.		
•	Understand mode of	2. Protozoa (07)		
	locomotion, nutrition and	Study of Euglena (locomotion, nutrition and		
	reproduction of Euglena,	reproduction)		
•	Describe some parasitic	Parasitic protozoans: Entamoeba, Giardia,		
	protozoan with mode of	Trypanosoma, Leishmania (diagnostic characters, mode		
	infection and disease caused	of infection and diseases caused)		
•	Describe functional anatomy	3. Porifera (03)		
	of sycon, and canal system	Study of Sycon (structure, skeleton and canal		
	and skeletal systems of	system)		
	porifera.	Canal system		
		Skeletal System		
•	Understand the structures and	4. Coelenterata(04)		
	reproduction of Obelia.	Study of Obelia (structure and reproduction)		
•	Describe polymorphism and	4.2 Polymorphism		
	coral formation	4.2. Coral reefs and coral		
•	Discuss the structures,	5. Platyhelminthes (05)		
	physiology and parasitic	Taenia solium, Schistosoma haematobium and		
	adoptions of important	Fasciola hepatica: structure, reproduction, life-cycle,		
	parasites.	pathogenecity and control measures.		
		Parasitic adaptations of helminths		
•	Describe structure and life	6. Nemathelminthes (05)		
	cycle of Ascaris.	Ascaris: structure, reproduction and life-cycle		
•	Discuss diagnostic characters,	Nematode parasites of man: Ascaris lumbricoides,		
	mode of infections and	Ancylostoma duodenale, Trichuris trichura and		
	disease caused by some	Wuchereria bancrofti: diagnostic characters, mode of		
	nematode parasites	infection and diseases caused		
•	Describe structure, life cycle	7. Annelida (05)		
	and pathogenicity of	Hirudinaria: Structure, physiology, life cycle,		
	Hirudinaria.	pathogenesity and parasitic adaptation		
•	Discuss about coelome,	Coelome		
	nephridia and metamerism	Nephridia		
		Metamerism		

Note: The figures in the parentheses indicate the approximate periods for the respective units. In addition to teaching hours (45), there will be 3 hours for reviews.

Undergraduate Programs							
External Evaluation	Marks	Internal	Weight	Marks	Practical	Weight	Mark
		Evaluation	age			age	
End semester examination		Assignments & Presentation	20%		Practical Report	25%	
(Details are given in the separate table at the end)	60	Quizzes	10%	-	Viva	25%	-
		Attendance	20%		Practical Exam	50%	
	-	Internal Exams	50%	20			20
Total External	60	Total Internal	100%	20		100%	20
Full Marks 60+20+20 = 100							

1. External evaluation

(i) End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

External Practical Evaluation:

After completing the end semester theoretical examination, practical examination will be held. External examiner will conduct the practical examination according to the above mentioned evaluation. There will be an internal examiner to assist the external examiner. Three hours time will be given for the practical examination. In this examination Students must demonstrate the knowledge of the subject matter.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

2. Internal evaluation

- (i). Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.
- (ii). **Presentation:** Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.
- (iii). **Quizzes:** Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.
- (iv). Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.
- (v). **Mid-term examination:** It is a written examination and the questions will be asked covering all the topics in the session of the course.

3. Prescribed Texts

- 1. Barnes, R. D. 1981. Invertebrate Zoology. Saunders College Publ.
- 2. Barnes, R. B., R.S.K. & Calow, P. P. 2001. The Invertebrates: A Synthesis. Wiley-Blackwell.
- 3. Barrington: Invertebrate Structure and Function (Nelson)
- 4. Moore: An introduction to the invertebrartes (Cambridge)

- 5. Kotpal, Agarwal and Khetrapal: Modern Textbook of Zoology: Invertebrate, (Rastogi)
- 6. Marshall: Parker and Haswell Textbook of Zoology, Vol. I (A.Z.T.B.S. Publishers & Distributors. New Delhi).
- 7. Jordon and Verma: Invertebrate Zoology (S. Chand)
- 8. Hickman, Hickman & Roberts. Integrated principles of zoology, Mosby college publication. St. Louis.
- 9-. Ruppert, E. E., R. S. Fox, and R. D. Barnes (2004). Invertebrate Zoology, 7th ed., Thompson Brooks/Cole Publ
- 10. Anderson, D. T.. 2006. Invertebrate Zoology. Oxford Univ. Press.
- 11. Brown, F. A. 2002. Invertebrates. Daya Publishing House.
- 12. Brusca, R.C. & Brusca, G.J. 2003. Invertebrates. Sinauer Associates, Inc.
- 13. Buchsbaum, R., Buchsbaum, M., Pearse, J. & Pearse, V. 1987. Animals without backbones: An Introduction to the Invertebrates. 3rd edition. University of Chicago Press.
- 14. Meglitsch P. A. & Schram, F. R. 1991. Invertebrate Zoology. Oxford Univ. Press.
- 15. Miller, S. A. & Harley, J. P. 2006. Zoology, 7th Edition. McGraw Hill International.
- 16. Moore, Janet. 2006. An Introduction to the Invertebrates. Cambridge University Press.
- 17. Pechenik, J. A. 2005. Biology of the Invertebrates. Tata McGraw Hill Publ.
- 18. Ruppert, E.E. & Barnes, R.D.1994, Invertebrate Zoology. Harcourt Asia Pvt. Ltd.
- 19. Ruppert, E. E., Fox, R. S. & Barnes, R. D. 2009. Invertebrate Zoology: A Functional Evolutionary Approach. 7th edition. Thomson Brooks/Cole.
- 20. Hyman, L.H.: The Invertebrates Vol. I-VI, McGraw-Hill, New York

Far-Western University Faculty of Science and Technology

Course No.: Zoo 111

Credit: 1 Nature of the Course: **Practical** Year: **First**, Semester: **First** Level: **B. Sc.**

No. periods/ week:

1. Course Description

This is practical course for B. Sc. first semester. The course intends to enable the students to be acquainted with basic concepts of systematic, classification schemes, histology and anatomy of lower non-chordates.

2. Course Objectives:

The general objectives of the courses are as follows.

- Identify the important representatives of lower non-chordate phyla.
- Know the histology different organs of lower non-chordates non-chordates.
- Learn general anatomy of different animals.

3. Course Contents

3. 1. Animal Diversity

Study of salient features and classification up to classes of the lower non-chordates with special emphasis on their adaptive characters: Study the typical representative of animals types either on slide or the specimens.

Levels of organization in Animal kingdom

Symmetry:	i) Asymmetric organization: Amoeba
	<i>ii)</i> Radial symmetry: Sea anemone, Aurelia
	iii) Bilateral symmetry: Planaria / liver fluke
Coelome	i) Acoelomate: T.S. of Planaria / liver fluke
	<i>ii)</i> Pseudocoelomate: T.S. of Ascaris
	iii) Coelomate : T.S. of Earthworm
Segmentation	i) Pseudosegmentation: Tapeworm
	ii) Metamerism: Earthworm

Culture of Protozoa. Any type (few)

Study of transverse sections/chart of the following: Sycon- as an example of Parazoa to show its structure, spicules and canal system, *Hydra*- as an example of diploblastic animal, *Fasciola*- as an example of triploblastic acoelomate animal, *Ascaris*- as an example of triploblastic pseudocoelomate animal, *Hirudinaria*- as an example of triploblastic schizocoelomate animal

Study of Permanent (Histological) slides.

Slides of *Vorticella*, *Leishmania*, *Obelia* with larval stages, *Fasciola* with its sections and larval stages, *Taenia* with its sections and larval stages, *Ascaris* - sections, *Hirudo*- sections,

- **3.6 Permanent Mounting (Permanent Slide Preparations)**. Any cultured Protozoa; *Daphnia*, *Cyclops, Cypris*, Spicules and Spongin fibres of Sponge, Nephridium, Salivary glands and jaws of *Hirudinaria*.
- **3.7. Dissection.** Leech and Earthworms General Anatomy, Digestive, Excretory, Nervous and Reproductive systems.

4. Scheme of Evaluation

This evaluation procedure consists of practical examination at the end of semester. The distribution of Marks for Practical Examination will be as follows.

Dissection = 35 %Temporary mount = 10 %Spotting of museum specimens/slides = 20 %Report writing on field visit/collections/preparations = 15 %. Viva voce = 10 %Class records = 10 %

5. Recommended books

Verma, P.S. : A Manual of Practical Invertebrate Zoology, S. Chand and Co., India. Lal, S.S. : A Text Book of Practical Zoology : Invertebrate.

Course Title: **Basic Chemistry I** Course No.: **CHM111** Nature of Course: **Theory** Level: **B. Sc.** Year: **First**, Semester: **First** F.M.: 100 P.M.: 45% Credit: 3 Number of hours per week: 3 Teaching Hours: 45

(1). Course Description

The course intends to enable the students to be acquainted with the basic concepts of chemistry, in all three branches physical, organic and inorganic chemistry. Students will be familiarized with the fundamentals of chemistry of states of matter, atomic structure, periodic table and the hydrocarbons.

(2). Course Objectives:

The general objectives of the course are as follows:

- To acquaint the students with basic concepts of the chemistry of gaseous, liquid and solid states.
- To enable the students to understand the fundamentals of the elements, atomic structure, the periodic table and the periodic properties.
- To enable the students to understand the basic chemistry of hydrocarbons.
- To enable the students to appreciate the importance of chemistry in day to day life and value the scientific method of chemical research and investigation.

(3). Specific Objectives and Contents:

Specific Objectives	Physical Chemistry Contents
 Explain the differences between ideal and real gases. Describe the postulate of Kinetic theory of ideal gases. Derive important Gas Laws based on kinetic gas equation. Discuss the basic concepts of velocity of gas molecules. Describe different types of the speed of gases as well as the collision parameters. Discuss the reason behind the deviation of ideal behaviour of the gas. Derive Van der Walls equation. Describe critical phenomena of the gases. Introduce the concept of liquefaction of gases. Enable the learners to acquire skill of solving numerical problems related to all gas laws. 	Unit I: Gaseous State (8) Ideal and real gases; Ideal gas equation; The gas constant; The Kinetic theory of ideal gases; The Kinetic gas equation; Deduction of the gas laws based on kinetic gas equation (Boyle's law, Charles's law, Avogadro's principle, Graham's law of diffusion, Dalton's law); The velocity of gas molecules; Root mean square velocity; Average velocity; Most probable velocity; Average kinetic energy of gas molecules; Molecular interpretation of the temperature. The Maxwell-Boltzmann distribution; Maxwell distribution of speeds; Types of average speeds; Pressure of an ideal gas; Collision of hard-sphere molecule (collision diameter, collision frequency, mean free path, collision density); Deviation of real gas from ideal behaviour; Causes of deviations; Derivation of Van der Walls equation; Explanation of behaviour of real gas from Van der Walls equation; Other equations of state; The Virial equation; Boyle's temperature and Van der Walls constants, Critical phenomenon; Relation between Van der. Walls constant and critical constants. Liquefaction of gases (Linde and Claude processes); Refrigerator; Liquefaction of air.
 Describe the molecular arrangement of the liquid. Discuss the different characteristics of liquid state such as density, diffusion, viscosity, surface tension, evaporation, boiling point, vapour pressure. Explain the methods of .determination of viscosity and surface tension. Discuss the applications of surface tension and viscosity. 	Unit II: Liquid State (3) Liquid (classification and molecular arrangement); Liquid state (density, diffusion, viscosity, surface tension, evaporation, boiling point, vapour pressure); Determination of viscosity and surface tension; Applications of surface tension and viscosity.
 Explain the difference between crystalline and amorphous solids. Explain the structure and properties of (metals, ionic crystals, covalent crystals) 	Unit III: Solid State (4) Classification (Crystalline and amorphous solids); Types of solids (metals, ionic crystals, covalent crystals, Van der Waals crystals) and their properties; Crystal structure; Unit cells and crystal systems; Bravais lattices; Cubic

and Van der Waals crystals.	crystals (simple, body centered and face centered cubic crystals); Miller
 Define and describe unit cells and crystal 	indices.
systems.	
 Illustrate and explain different types of 	
cubic crystals.	
 Explain Bravais lattices and Miller indices. 	
	Organic Chemistry
•Explain the structures of alkanes and	Unit IV: Alkanes (5)
alkane isomers.	Alkanes and alkane isomers; Alkyl groups; Nomenclature of alkanes;
•Explain IUPAC system of naming alkanes.	Properties of alkanes; Conformations of ethane; Conformations of other
•Describe the properties of alkanes.	alkanes; Cycloalkanes; Nomenclature of cycloalkanes; Cis-Trans isomerism in
•Define the term conformation and discuss	cycloalkanes; Stability of cycloalkanes; Conformations of cycloalkanes
conformational analysis of the alkanes.	(cyclopropane, cyclobutane, cyclopentane and cyclohexane); Axial and
•Explain the structure, IUPAC	equatorial bonds; Conformations of mono- and disubstituted cyclohexanes;
nomenclature and geometrical isomerism	Conformations of polycyclic molecules.
of cycloalkanes.	
•Discuss the factors affecting the stability	
of cycloakkanes.	
•Discuss the conformational analysis of	
cycloalkanes including mono- and	
disubstituted cyclohexanes and polycyclic	
molecules.	
•Explain the structure, industrial	Unit V: Alkenes (6)
preparation, uses, IUPAC nomenclature	Alkenes; Industrial preparation and uses of alkenes; Calculation of degree of
and geometrical isomerism of alkenes.	unsaturation; Nomenclature of alkenes; Cis-Trans isomerism; The Sequence
•Discuss the Sequence Rule of E, Z	Rule (the E,Z designation); Stabilty of alkenes, Electrophilic addition
designation.	reactions; Orientation of electrophilic addition reactions (Markovnikov' rule);
•Discuss the electrophilc addition reactions	Carbocation structure and stability; The Hammond postulate; Evidence for
of alkenes in terms of mechanism and	the mechanism of electrophilic addition reaction.
orientation.	Preparation of alkenes; Addition of halogens to alkenes; addition of
 Introduce the Hammond postulate and 	hypohalous acids to alkenes; Addition of water to alkenes (Oxymercuration
highlight its importance.	and Hydroboration reactions); addition of carbenes to alkenes; Reduction of
•Explain different types of preparation and	alkenes; Oxidation of alkenes (Epoxidation, Hydroxylation and Cleavage to
reactions of the alkenes.	Carbonyl Compounds); Radical additions to alkenes; Biological addition of
	radicals to alkenes.
• Explain the structure and IUPAC	Unit VI: Alkynes (4)
nomenclature of alkynes.	Alkynes; Nomenclature of alkynes; Preparation of alkynes; Reactions of
• Explain different types of preparation and	alkynes (Addition of HX and X ₂); Hydration of alkynes;
reactions of the alkynes.	Hydroboration/Oxidation of alkynes; Oxidative cleavage of alkynes; Alkyne
 Introduce the role of alkynes in organic 	acidity and formation of acetylide anions; Alkylation of acetylide anions;
synthesis.	introduction to organic synthesis.
	Inorganic Chomistry
 Evolution the Behr model of stem and its 	Unit VII: Atomic Structure, Deriodic Table and Elements (15)
subsequent refinement	Electronic structure of the atom: Rohr theory: Improvement on Rohr theory:
Evolain wave mechanical model of	Wave mechanics: de Broglie's equation: Heisenberg's uncertainty principle:
atom	Schrodinger's wave equation (time independent). Physical significance of
 Enable the students to write electronic 	wave function. Normalization of wave function: Probability: Density pattern
configuration of atoms	for hydrogen atom; Radial and angular wave functions; Radial distribution
 Introduce the students with 	curves; Atomic orbitals in wave machanics; Orbitals (s, p, d, f orbitals);
fundamentals of nuclear chemistry	Charge cloud diagrams and boundary surface diagrams; Nodal planes;
 Explain the periodic law and the 	Quantum numbers and their significance; Energy levels in the hydrogen
periodic table.	atom; Structure of atoms with many electrons; Radial penetration of the
 Discuss the periodic trend in the 	wave functions; The Aufbau principle; Hund's rule; The Pauli exclusion
periodic table.	principle; Electronic configuration.
 Describe the occurrence and principle 	The nucleus; Subatomic particles; Nuclear stability; Binding energy;

behind different methods of extraction	Radioactivity; Natural and induced radioactivity; Half-life determination and
and purification of metals from its ore.	nuclear reactions; Radioactive displacement law and radioactivity series.
	Periodicity of elements; The preiodic law and arrangement of elements in
	the periodic table; IUPAC system of Periodic Table; s, p, d and f blocks; Long
	form of Periodic Table; General properties of atoms- size of atoms and ions-
	atomic radii; Ionic radii; Covalent radii; Trends in ionic radii, ionization
	potential, electron affinity; Electronegetivity (Pauling, Mulliken, Alfred-
	Rochow definition); Oxidation states and variable valency; Isoelectronic
	relationship; Standard reduction potentials; Electrochemical series.
	The occurrence and isolation of elements, Factors influencing the choice of
	extraction process, Mineral benefication-pretreatment, Dense medium
	separation, Flotation process, Solution methods, Magnetic separation,
	Electrostatic precipitation, Thermal decomposition methods, Displacement
	of one metal by another, High temperature chemical reduction methods,
	Reduction by carbon, Reduction by metal, Self-reduction, Reduction of
	oxides by hydrogen, Electrolytic reduction in aqueous, non-aqueous and
	fused melts, Thermodynamics of reduction process-Ellingham diagram.

(4). Evaluation System

Undergraduate Programs

External Evaluation	Marks	Internal Evaluation	Weight age	Marks	Viva-voce	Weight age	Mark
End semester examination		Assignments	20%		Report and Presentation on any topic	50%	
(Details are given in the separate table at the end)	60	Quizzes	10%	20	Presentation	25%	20
		Attendance	20%		Viva	25%	
		Internal Exams	50%				
Total External	60	Total Internal	100%	20		100%	20
Full Marks $60+20+20 = 1$	00						

(I).External evaluation:

End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course. **External Evaluation (Viva):**

After completing the end semester theoretical examination, viva examination will be held. External examiner will evaluate report/presentation & take viva exam and will do above mentioned evaluation. Students should make a small report by relating any of the studied topics in the subject to some application areas/examples. Reports can be made in groups. There will be an internal examiner to assist the external examiner. In this examination Students must demonstrate the knowledge of the subject matter.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom

discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Assignments
- Presentation by Students
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

(5). Prescribed Texts:

- 1. S. H. Maron, C. Prutton, Principles of Physical Chemistry, Oxford and IBH Publication and Co., 1992.
- 2. John Mc Murry, Introduction to Organic Chemistry, Brookes/Cole, 2007.
- 3. J.D. Lee, **Concise Inorganic Chemistry**, 5th Edition, John Wiley and sons. Inc., 2007.

(6). Reference

- 4. F. Daniels, R. F. Alberty, Physical Chemistry, John Wiley & Sons, Latest Edition.
- 5. Gilbert. W. Castellan, Physical Chemistry, Narosa Publishing House, 1985.
- 6. R. T. Morrison, R. N. Boyd, Organic Chemistry, Prentice- Hall of India Pvt. Ltd., 2008.
- 7. J. S. H. Pine, Organic Chemistry, McGraw Hill International Edition Series, New York, USA, 1987.
- 8. F.A. Cotton, G. Wilkinson, C. Gaus, Basic Inorganic Chemistry, John Wiley & Sons (Asia) Pvt. Ltd., 2007.
- 9. D. F. Shriver, P. W. Atkins, Inorganic Chemistry, W. H. Freeman and Co., London, 1999.
- 10. B. R. Puri, L. R. Sharma , K. C. Kalia, **Principles of Inorganic Chemistry**, Shoban Lal Nagin Chand and Co., Delhi, India, 1996.

Course Title: Chemistry Lab I Course No.: CHM111 Nature of Course: Practical Level: B. Sc. Year: First, Semester: First

(1). Course Description

The course intends to enable the students to be skilful in the basic chemical laboratory techniques. Students will be introduced to scientific method of experimentation. Students will develop skill on performing an experiment, observing and recording results and judiciously interpreting the results.

(2). Course Objectives

The general objectives of the course are as follows:

- To enable students to perform experiments on liquid properties of matter.
- To enable the students to develop basic analytical skill on organic qualitative analysis.
- To enable the students to develop basic analytical skill on inorganic qualitative analysis.

Specific Objectives	Contents
• Enable the students to undertake	Physical Chemistry Content
experiments on surface tension and	1. Determination of surface tensions of two liquids supplied with the help of
viscosity and interpret the results	a Stalagnometer and interpret the result.
obtained.	2. Determination of the viscosity of two liquids with the help of a Ostwald's
• Enable the students to perform an	viscometer and interpret the result.
experiment on Rast method to	
determine the molecular weight of an	Organic Chemistry Content
organic compound.	1. Determination of melting and boiling points of organic compounds.
	2. Determination of mixed melting point.
	3. Detection of N, S and halogens.
Enable the students to perform	4. Test for aliphatic and aromatic nature of organic compounds
experiments on boiling point	5. Purification of organic compounds by crystallization, distillation,
determination and melting/ mixed	sublimation and filtration.
melting point determination.	6. Determination of functional groups present in organic compounds based
• Enable the students to perform	on solubility.
experiments on foreign elements	
detection and test for aliphatic and	Inorganic Chemistry Content
aromatic nature in organic compounds.	1. Calibration of volumetric kits: burette, pipette and standard flasks.
• Enable the students to purity organic	2. Preparation of Standard solutions.
compounds by means of crystallization,	3. Experiment on acid – base titrations;
distillation, sublimation and filtration.	a. Estimation of HCI.
• Enable the students to determine the	 D. Estimation of oxalic acid. Estimation of total ellipticity in a complete function.
functional groups according to the	c. Estimation of total alkalinity in a sample of water.
Solubility of the compounds.	Everytements on radou tituations
• Enable the students to calibrate the	Experiments on redox titrations
volumetric kits and prepare standard	a. Estimation of refrous annonium suprate (permagnometry)
Enable the students to perform	b. Estimation of $KMnO_{1}$ (indometry)
experiments on acid- base and rodox	
titrations	

(3). Specific Objectives and Contents

(4). Textbooks and Reference Books

- David P. Shoemaker, Carl W. Garland, Joseph W. Nibler, **Experiments in Physical Chemistry**, 5th edition, McGraw-Hill Book Company, **1989**. (Latest Edition).
- B. P. Levitt, ed. Findlay's Practical Physical Chemistry, Longman, London, 1973. (Latest Edition)

Credit: 1 Number of hours per week: 3

- J. N. Gurtu, R. Kapoor, Advanced Experimental Chemistry (Vol I III), S. Chand and Co., New Delhi, India, 1989. (Latest edition).
- B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchel, Vogel's Text Book of Practical Organic Chemistry, 5th Edition, Person Education, 2005.
- L. Shriner, R. C. Fusion, D. Y. Curtin, **The Systematic Identification of Organic Compounds**, **A Laboratory Manual**, John Wlley and Sons Inc, New York, USA , **1980**. (Latest Edition).
- N. S. Gnanapragasam, G. Ramamurthy, **Organic Chemistry Lab Manual,** S. Viswanathan Co., Pvt., India, **1998.**
- Vogel's Text Book of Inorganic Qualitative Analyses, 4th Edition, ELBS, London, **1974**. (Latest Edition).
- Moti Kaji Sthapit, R. R. Pradhananga, **Experimental Physical Chemistry**, Taleju Prakasan, Kathmandu, Nepal, **1998**.
- K. N. Ghimire, M. R. Pokhrel K. P. Bohara, University Experimental Inorganic Chemistry, Quest Publication, Kirtipur, Kathmandu, Nepal, 2008.