Far Western University Mahendranagar, Kanchanpur Faculty of Science and Technology

B. Sc. Fourth Semester Physical Group

FAR WESTERN UNIVERSITY

Faculty of Science and Technology

Course Title: Basic Chemistry IV Course No.: CHM241 Nature of Course: Theory Level: B. Sc. Year: Second, Semester: Fourth F.M.: 100 P.M.: 45% Credit: 3 Number of hours per week: 3 Teaching Hours: 45

1. Course Description

The course intends to enable the students to be acquainted with some aspects of basic concepts of chemistry, in all three branches physical, organic and inorganic chemistry. Students will be familiarized with the fundamentals of electrochemistry, thermodynamics as well as chemistry of carbonyl group, carboxylic acid and *d*-block elements.

2. Course Objectives

The general objectives of the course are as follows:

- To acquaint the students with basic concept of electrochemistry.
- To enable the students to understand the fundamentals of chemical thermodynamics.
- To enable the students to understand basic chemistry of aldehydes, ketones and carboxylic acids.
- To acquaint the students with the fundamental chemistry of *d*-block elements.
- To enable the students to appreciate the importance of chemistry in day to day life and value the scientific method of chemical research and investigation.

3. Specific Objectives and Contents

Specific Objectives	Physical Chemistry Contents
• Explain electrolytic conductance.	Unit I: Electrochemistry (7)
• State and explain Debye-Huckel Theory of	Electrolytic conductance; Activities and activity coefficients of
activitycoefficient.	strong electrolytes; Debye-Huckel Theory of activity coefficient;
Describe about Debye-Huckel-Onsagar	Debye-Huckel- Onsagar equation; Effect of concentration,
equation.	solvent, dielectric constant and temperature on conductance.
• Explain the effect of concentration, solvent,	Conductometric titrations involving neutralization and
dielectric constant and temperature on	precipitation reactions; Advantages of conductometric titrations.
conductance.	Galvanic and Electrolytic Cells; Electromotive force and its
• Explain theory and applications of	measurement; Standard cells; Single electrode potentials; Cell
conductometric titrations.	reactions and EMF; Calculation of Cell's EMF from single
• Explain the difference between Galvanic and	electrode potentials; applications of EMF measurements; Types,
Electrolytic Cells.	classification and description of electrodes; Reference electrodes;
• Describe what EMF is and how to measure it.	Indicator electrodes; Determination of pH using hydrogen
• Show how calculation of Cell's EMF is done.	quinhydrone, glass and antimony electodes; Potentiometric
• Describe types, classification and	titrations; Commercial cells (The Leclanche or Dry cell, the Lead
description of electrodes.	Storage cell, Nickel Cadmium Cell, Fuel Cell).
• Explain theory and applications	
ofpotentiometric titration.	
• Explain different types of commercial cells.	
State and explain first law of	Unit II: Themodynamics(8)
Thermodynamics.	First law of Thermodynamics; The Thermodynamic system;
Describe The Thermodynamic system.	Reversibility and maximum work; Enthalpy of a system; Heat
\Box Explain the relation between Cp and Cv.	capacity; Relation between Cp and Cv; Isothermal and adiabatic
\Box Describe The Joule- Thomson effect.	processes; Isothermal and adiabatic processes in ideal gases; The
Describe the Carnot cycle.	Joule- Thomson effect; The Carnot cycle; The Thermodynamic
Explain what entropy is.State and explain second law of	efficiency.
Thermodynamics.	Entropy; Entropy change in isolated system; The Second Law of
\Box Explain entropy change in ideal gases	Thermodynamics; Entropy change for a system; Dependence of
and entropy change in physical	entropy on variables of a system; Entropy change in ideal gases;
transformations.	Entropy change in physical transformations; Entropy change in
\Box Enable the students to solve the	chemical reactions; Spontaneous and non-spontaneous changes;
numerical problems related first and second	Free energy, work function and their significance; Criteria for
laws of thermodynamics.	spontaneity of the reactions.

\Box Explain the concept of the free energy,	
work function and their significance as well	
as criteria forspontaneity of the reactions.	
as cificita for spontalienty of the feactions.	Unit III Aldahadan and Vatanan (0)
	Unit III. Aldehydes and Ketones (8)
• Explain the nomenclature and bonding of	Kinds of carbonyl compounds; Nature of carbonyl group; General
aldehydes and ketones.	reactions of carbonyl compounds.
• Describe different ways of preparation of	Names of aldehydes and ketones; Preparation of aldehydes and
aldehydes and ketones.	ketones; Oxidation of aldehydres and ketones; Nucleophilic
• Explain the major reactions shown by	addition reactions of aldehydes and ketones; The Hydration
aldehydesand ketones with mechanism.	reaction; Cyanohydrin formation reaction; Nucleophilic addition
• Discuss 1, 2-addition vs 1, 4-addition	of Grignard and Hydride reagents; Imine and enamine formation;
reactions and the factors that favour them.	The Wolff- Kishner reaction; Nucleophilic addition of alcohols:
• Describe the reactions involving	acetal formation; The Wittig reaction; The Cannizzaro reaction;
organolithium, Grignard reagents,	1,2-addition vs 1,4-addition reactions;1,2- addition by
OraganocopperOrganocadmium reagents.	organolithium and Grignard reagents; Conjugate addition of
	Oraganocopper reagents, Organocadmium reagents.
• Explain the nomenclature and bonding of	
carboxylic acids.	Unit IV. Carboxylic Acids (7)
• Describe different ways of preparation of	Introduction; Names of carboxylic acids; Structure and properties
carboxylic acids with mechanism.	of carboxylic acids; Substituent effects on acidity; Preparation of
• Describe ways to prepare derivatives of	carboxylicacids; Reactions of carboxylic acids; Formation of salt,
carboxylic acids and their major reactions	acid chloride, anhydride, amide and ester and their major
with mechanism.	reactions; Chemistry and applications of Malonic ester and
• Describe chemistry and applications of	Acetoacetic ester syntheses
malonic ester and acetoacetic ester syntheses	
with mechanism.	Inorganic Chemistry content
	Unit V. The <i>d</i> -Block Elements (15)
• Describe the characteristic features of <i>d</i> -	Electronic configuration; Metallic character; Variable oxidation
blockelements.	states; Size of atoms and ions; Density; Melting and boiling
• Discuss Werner's contribution in	points; Reactivity of metals; Ionization energies; Colors; Magnetic
understanding the chemistry of	properties.
coordination compounds.	Coordination compounds; Werner's contribution on coordination
• Describe the geometry of coordination	compounds; d orbital; Recent methods of studying complexes;
compounds.	Effective atomic number; Nomenclature; Coordination number
• Discuss bonding in transition metal	and geometry; Effective atomic numbers; Bonding in transition
complexes with reference to valence bond	metal complexes; Valence bond theory; Crystal field theory; Effect
theory and Crystal field theory.	of Crystal field splitting; Jahn-Teller distortion; Square planar and
• Define and explain the importance of	
chelates.	of coordination compounds. Catalytic properties of TiCl4, TiO2,
• Describe some important catalytic	V2O5, FeCl3, PdCl2, PtO2, Ni, Ziegler-Natta catalyst);
reactions stressing on mechanism and	Bioinorganic chemistry of Fe, Cr and Cu.
applications.	
• Explain basic bioinorganic chemistry of	
Fe, Cr and Cu.	
Note: The figures in the parentheses indicate the	

Note: The figures in the parentheses indicate the approximate periods for the respective units.

4. Evaluation System

Undergraduate Programs							
External Evaluation	Mark s	Internal Evaluati on	Weigh tage	Mark s	Practical	Weigh tage	Mar k
End semester examination		Assignments	20%	20	Practical Report copy	25%	20
(Details are given in the separatetable at the end)	60	Quizzes	10%		Viva	25%	
		Attendance	20%		Practical Exam	50%	

]	Internal Exams	50%				
Total External	60	Total Internal	100	20		100%	20
			%				
Full Marks 60+20+20 =							
100							

5. External evaluation

1. End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course. **External Practical Evaluation**:

After completing the end semester theoretical examination, practical examination will be held. External examiner will conduct the practical examination according to the above mentioned evaluation. There will be an internal examiner to assist the external examiner. Three hours time will be given for the practical examination. In this examination Students must demonstrate the knowledge of the subject matter.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination.

Failedstudent will not be eligible to appear in the end semester examinations.

6. Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class willsignify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

Lecture and Discussion

- Group work and Individual work
- Assignments
- Presentation by Students
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a studentdoes not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period.

7. Prescribed Texts

- 1. S. H. Maron, C. Prutton, **Principles of Physical Chemistry**, Oxford and IBH Publication and Co., 1992.
- 2. John McMurry, Introduction to Organic Chemistry, Brookes/Cole, 2007.
- 3. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, John Wiley and sons. Inc., 2007.

8. Reference

- 4. F. Daniels, R. F. Alberty, Physical Chemistry, John Wiley & Sons, Latest Edition.
- 5. Gilbert. W. Castellan, Physical Chemistry, Narosa Publishing House, 1985.
- 6. R. T. Morrison, R. N. Boyd, Organic Chemistry, Prentice- Hall of India Pvt. Ltd., 2008.
- 7. J. S. H. Pine, Organic Chemistry, McGraw Hill International Edition Series, New York, USA, 1987.
- 8. F.A. Cotton, G. Wilkinson, C. Gaus, Basic Inorganic Chemistry, John Wiley & Sons (Asia) Pvt. Ltd., 2007.
- 9. D. F. Shriver, P. W. Atkins, Inorganic Chemistry, W. H. Freeman and Co., London, 1999.
- 10. B. R. Puri, L. R. Sharma, K. C. Kalia, **Principles of Inorganic Chemistry**, Shoban Lal Nagin Chand and Co., Delhi, India, 1996.

FAR WESTERN UNIVERSITY

Faculty of Science and Technology

Course Title: Basic Chemistry IV PR Course No.: CHM241 Nature of Course: Practical Level: B. Sc. Year: Second, Semester: Fourth

1. Course Description

The course intends to enable the students to be skilful in the basic chemical laboratory techniques. Students will be introduced to scientific method of experimentation. Students will develop skill on performing an experiment, observing and recording results and judiciously interpreting the results.

2. Course Objectives

The general objectives of the course are as follows:

- To enable students to perform experiments on the conductometric and potentiometric titrations..
- To enable the students to develop basic skills on the identification of single organic compound.
- To enable the students to develop skill on the Gravimetric estimation.
- To enable students to develop skill on observation, recording and interpretation of an experiment.

3. Specific Objectives and Contents

Špecific Objectives	Content
	S
 Enable the students to undertake experiments on the conductometric titrations and interpret the results obtained. Enable the students to undertake experiment on the potentiometric titration and interpret the results obtained. Enable the students to use pH meter to determine pH of a solution. Enable the students to perform experiment to identify the given organic compound. 	 An experiment on conductometric titration of strong acid against strongbase. An experiment on conductometric titration of weak acid against strongbase.
•Enable the students to perform experimentson Gravimetric analysis	 Inorganic Chemistry Content 1. Experiments related to the following Gravimetric estimation are to be performed. Estimation of sulphate as barium sulphate. Estimation of barium as barium chromate. Estimation of copper as copper thiocyanate. Estimation of copper in an alloy.

4. Instructional Techniques

Before the start of an experiment, the instructor presents a lecture on the details of the experiment including thesafety considerations. Each student will perform independently all the experiments prescribed.

5. Evaluation

There will be continuous examination of the students. After the submission of the report of each experiment by the students, the instructor provides the grade. Besides this, the instructor takes quizzes and short examinations on the experiments done at frequent intervals amounting to 25 % of total grade. The final grade will be the accumulation of all individual grades. There will be no final examination

6. Attendance in Lab: Students should complete all the experiments prescribed.

Credit: 1 Number of hours per week: 3 Teaching Hours: 45

7. Texts

- 1. David P. Shoemaker, Carl W. Garland, Joseph W. Nibler, **Experiments in Physical Chemistry**, 5th edition, McGraw-Hill BookCompany, **1989**. (Latest Edition).
- 2. B. P. Levitt, ed. Findlay's Practical Physical Chemistry, Longman, London, 1973. (Latest Edition)
- 3. J. N. Gurtu, R. Kapoor, Advanced Experimental Chemistry (Vol I III), S. Chand and Co., New Delhi, India, 1989. (Latestedition).
- 4. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchel, Vogel's Text Book of Practical Organic Chemistry, 5th Edition, Person Education, 2005.
- 5. A. L, Vogel, Qualitative Inorganic Analysis, Prentice Hall, Latest Edition.
- 6. L. Shriner, R. C. Fusion, D. Y. Curtin, **The Systematic Identification of Organic Compounds, A** Laboratory Manual, John Wlley and Sons Inc, New York, USA , **1980**. (Latest Edition).
- 7. N. S. Gnanapragasam, G. Ramamurthy, Organic Chemistry Lab Manual, S. Viswanathan Co., Pvt., India, 1998.
- 8. Vogel's Text Book of Inorganic Qualitative Analyses, 4th Edition, ELBS, London, 1974. (Latest Edition).
- 9. Moti Kaji Sthapit, R. R. Pradhananga, Experimental Physical Chemistry, Taleju Prakasan, Kathmandu, Nepal, 1998.
- 10. K. N. Ghimire, M. R. Pokhrel K. P. Bohara, University Experimental Inorganic Chemistry, Quest Publication, Kirtipur, Kathmandu, Nepal, 2008.
- N. M. Khadka, S. D. Gautam, P. N. Yadav, A Core Experimental Chemistry for B.Sc , Kaea Book Centre, Kathmandu, Nepal, 2008.
- K. N. Ghimire, K. P. Bohara, University Experimental Physical Chemistry, Quest Publication, Kirtipur, Kathmandu, Nepal, 2008.

FAR WESTERN UNIVERSITY

Faculty of Science and Technology

Course Title: Biochemistry Course No.: BHM241 Nature of Course: Theory Level: B. Sc. Year: Second, Semester: Fourth F.M.: 100 P.M.: 45% Credit: 3 Number of hours per week: 3 Teaching Hours: 45

1. Course Description

The course intends to enable the students to be acquainted with the general human biochemistry and explain the role of biomolecules in the living organisms. The aim of the course is to provide fundamental knowledge of structure, properties and biological functions of amino acids, proteins, carbohydrates, lipids, nucleic acids and vitamins.

2. Course Objectives

After the completion of the course the students will be able to understand:

- Explanation of basic tenets of Biochemistry
- Biochemical Explanation of life, structure and roles of biomolecules in the living organisms.

Specific Objectives	Contents
• To discuss Introduction, short history of biochemistry and Biochemicalexplanation of life.	 Unit I: Introduction to Biochemistry and Basic Concept of Life (2) Definition and short history of biochemistry Biochemical explanation of life Water as the universal solvent for life, Biological Buffers
• To describe the structure, and biological functions of classification, properties amino acids, proteins, carbohydrates and lipids.	 Unit II: Biomolecules (15) Amino Acids and Proteins: Structure and characteristics of common amino acids Classification and nomenclature of amino acids Physical and chemical properties of amino acids The peptide bond Terminal group analysis of amino acid sequence Biological functions of amino acids Classification of amino acids Structure of protein molecules Quantities estimation of proteins Biological role of protein
	 Carbohydrates Characterization of carbohydrates Properties of carbohydrates Classification of carbohydrates Structure of common monosaccharides, diaccharides andpolysaccharides Biological role of carbohydrates
• To explain process biochemistry	 Lipids: Characteristics of lipids Fatty acids (saturated and unsaturated fatty acids) Classification of lipids Physical and chemical properties of lipids Biological role of lipids Unit III: Metabolisms
and biological significance of Principle of Bioenergetics	

3. Specific objectives and Contents

 Glycolysis, TCA cycle, Pentose phosphate pathway, Electron transportchain Protein metabolisms: Transamination, Oxidative and non-oxidative deamination Urea cycle Metabolism of Glycogenic and ketogenic amino acids Lipid metabolisms: Hydrolysis of triacylglycerols
 Detailed account of β-oxidation of fatty acids
• Ketogenesis, Ketosis and ketoacidosis in physiology and pathology
 Unit IV: Enzymes (8) Classification and nomenclature of enzymes Specificity of enzyme action (lock and key model) Properties of enzymes Enzyme catalysis: Proximity and Orientation effect, covalent catalysis, acid-base catalysis, metal ion catalysis Regulatory enzymes: Allosteric (ATCase) & covalently modulated(Glycogen phosphorylase) enzymes Enzyme kinetics: Improtance of measuring intial velocities, derivation of Michaelis-Menten equation Enzyme inhibition and effect of pH, temperature, substrate concentrationand incubation time on enzyme action
 Unit V: Nucleic acid and Genetics (10) Purine and pyrimidine bases, nucleisides and nucleotide
 Structure and types of nucleic acids
 DNA and RNA are genetic material for organisms
Watson and Crick model of DNA
• DNA replication (Semiconservative method)
RNA synthesis and genetic code
 Biosynthesis of protein DNA renain and conversing
DNA repair and sequencingRecombinant DNA technology
 Regulation of gene expression
-

Reference Books for Basic Biochemistry

- 1. David L. Nelson and Michael M. Cox, *Lehinnger's Principle of Biochemistry*, 4th edition, Worth Publisher, New York, USA.
- 2. Lubert Stryer, *Biochemistry*, W. H. freeman and company, New York, USA, 1975
- 3. Pamela C. Champe, Richard A. Havrvey and Denise R. Ferrier, Lippincott's Illustrated Reviews Biochemistry, 5th edition, Walter Kluwer (India) Pvt, Ltd., New Delhi.

- J. L. Jain, *Biochemistry*, Sultan Chand and company Co., 1999.
 A. C. Deb, Fundamental of Biochemistry, New Central Book agency (p) Ltd, India, 2012.
 Elliott W.H. and D. C. Elliot, Biochemistry *and Molecular Biology*, 4th edition, Oxford University press, New Delhi.
- 7. T. Devsena, *Enzymology*, Oxford University Press, New Delhi, India, 2010.

Evaluation System

Undergraduate Programs				
External Evaluation	Marks	Internal Evaluation	Weight age	Marks
End semester examination		Assignments	10%	
(Details are given in the separate table at the end)		Quizzes	10%	
		Attendance	10%	

	60	Presentation	10%	40
		Mid-Term & Pre-board	50%	
		exam		
		Group work	10%	
Total External	60	Total Internal	100%	40

External evaluation

End semester examination

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination.

Failed student will not be eligible to appear in the end semester examinations.

Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Mid-term & Pre-board examination: These are written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Assignments
- Presentation by Students
- Term Paper writing
- Case study
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

FAR WESTERN UNIVERSITY Faculty of Science and Technology

Course Title: Electronics Course No.: PHY 241 Nature of the Course: Theory Year: Second, Semester: 4th Level: B.Sc. Credit: **3** Number of hours per week: **3** Total hours: **45**

1. Course Description

The course intends to enable the students to be acquainted with the basic concepts of Electronics. Students will be familiarized with the fundamentals of Circuit Analysis, Diodes, Transistors, Amplifiers, Oscillators and Digital circuits.

2. Course Objectives

At the end of this course the students should be able:

- to acquire sufficient basic knowledge in Electronics
- to apply this knowledge base for studying major courses in physics.
- to solve mathematical problems in related topics.
- to deduce mathematical equations and formulas.

3. Specific Objectives and Contents

Specific Objectives	Contents
 Describe the circuit analysis using various network theorems Explain superposition theorem Explain and use The venin's and Norton's theorems Describe maximum power transfertheorem 	Unit I: Network Theorems (4) Superposition theorem, The venin's theorem, Norton's theorem, Maximum power transfer theorem
 Describe the formation and working of P-N junction diode Explain the characteristics and applications of the diode Describe the uses of diode as half-wave and full-wave rectifiers Explain the working of Zener diode 	Unit II: Diodes (6) P-N junction diode: characteristics and applications, half- wave and full-wave rectifiers, Zener diode and voltage regulation, LED and photodiodes

- Describe voltage regulation
- Explain the working of LED and photodiodesh
- Describe NPN and PNP characteristics
- Explain various transistor biasing and their equivalent circuits
- Explain DC load line, Q point and stability factor
- Derive and explain the relation between currents
- Explain the working of transistors asamplifiers
- Explain the classification of Amplifiers
- Describe class A, B and C amplifiers
- Explain the working of RC-Coupled Amplifiers
- Derive and explain the Berkhausen criterion
- Explain the working of Hartley, Colpitts, phase shift and Wien bridge oscillators
- Describe the uses and working of Astable, monostable and bistable of of, multivibrators
- Explain various number systems
- and their interconversion
- Describe Boolean algebra
- \Box Explain the De Morgan's
- theorem
- Describe the construction of logic gates using diodes and transistors
- □Explain the working of various gates
- \Box Explain the universal gates
- Explain the construction of half adder, full adder, half subtractor and full subtractor using the gates

Unit III: Transistors (10)

NPN and PNP characteristics, transistor biasing: CB, CC and CE configurations, DC load line, Q point, stability factor, DC and AC equivalent circuits

Unit IV:Amplifiers (7)

CB, CE and CC amplifiers, Classification of Amplifiers: Class A, Band C amplifiers, RC-Coupled Amplifiers

Unit V: Oscillators (8)

Berkhausen criterion, Hartley, Colpitts, phase shift and Wien bridge oscillators, multivibrators: Astable, monostable and bistable

Unit VI: Digital circuits (10)

Decimal, binary, octal and hexadecimal number systems, Boolean algebra, De Morgan's theorem, logic gates (OR, AND,NOT,NAND,NOR, X-OR and X-NOR gates using diodes and transistors), half adder and full adder, half subtractor and full subtractor

4. Evaluation System

Undergraduate Programs							
External Evaluation	Mark s	Internal Evaluatio n	Weigh tage	Mark s	Practical	Weigh tage	Mar k
End semester examination		Assignments	20%		Practical Report copy	25%	
(Details are given in the separate table at the end)	60	Quizzes	10%	20	Viva	25%	20
		Attendance	20%		Practical Exam	50%	
		Internal Exams	50%				
Total External	60	Total Internal	100 %	20		100%	20
		Full Mark	s 60+20+2 100	20 =	1	1	1

5. External evaluation

1. End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

2. External Practical Evaluation:

After completing the end semester theoretical examination, practical examination will be held. External examiner will conduct the practical examination according to the above mentioned evaluation. There will be an internal examiner to assist the external examiner. Three hours time will be given for the practical examination. In this examination Students must demonstrate the knowledge of the subject matter.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

6. Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time forsubmission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have tomake presentations on the given topics.

Mid-term examination: It is a written examination and the questions will be asked covering all thetopics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Assignments
- Presentation by Students
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period.

7. Prescribed Text

• Theraja B. L., Basic Electronics Solid State, S.Chand and Company Ltd, New Delhi 8. Reference

- Malvino A. P., Electronic Principles, Tata McGraw Hil Pub.
- Bogart T. F., Electronic Devices and Circuits, Universal Book Stall, New Delhi

FAR WESTERN UNIVERSITY Faculty of Science and Technology

Course Title: Electronics PR **Course No.: PHY241 Nature of the Course**: Practical

Objectives:

By the end of the course the student should be able to: measure correctly the basic physical quantities determine errors in measurements analyze raw data and make valid conclusions validate corresponding theoretical component develop proper laboratory skills design basic physics experiments interpret experimental results and draw logical conclusions relate theoretical concepts to practical skills

List of Experiments:

To determine the resonant frequency and quality factor of series LCR circuit To verify the maximum power transfer theorem To verify The venin's and Norton's theorems To study the CB characteristics of a transistor To study the CE characteristics of a transistor To study the CC characteristics of a transistor To construct a regulated power supply using Zener diode To study OR, AND and NOT gates using DTL and TTL To study NOR and NAND gates using DTL and TTL To verify NAND and NOR gates as the universal gates

Note:

Student must perform 6 Hours of lab work (2 Hours x 3 times or 3 Hours x 2 times) every week In every semester, at least Eight experiments are to be performed. Additional experiments may beadded subject to availability of time.

The practical exam will be graded on the basis of the following marking scheme:

In-Semester Evaluation	20%
Final Exam Written	60%
Final ExamOral	20%

References:

- 1. Arora, C. L., B.Sc. Practical Physics, S Chand and Company Ltd.
- 2. Squires, G. L., Practical Physics, Cambridge University Press.
- **3.** Shukla, P. K. and Srivastava, A., 2006, *Practical Physics*, New Age International (P) Limited, Publishers

Year: 2 Semester: 4th Credit: 1

FAR WESTERN UNIVERSITY Faculty of Science and Technology

Course Title: Environmental Pollution and Control Techniques TH **Course No.: ENV241 Nature of the Course**: Theory Year: 2 Semester: 4th Credit: 3

Course Objectives:

Upon completion of this course, Students will be able to

- Understand basic science about various type of environmental pollution,
- Understand the process behind these phenomenon
- Incept the knowledge and theory of pollution control technologies.
- Understand the discipline of ecotoxicology and fate of toxicants in environment.

Specific Objectives	Content	
	S	
 To make students able to understand the basic concept of Air pollution. To provide scientific knowledge about process behind Air Pollution To explain students about effect of Air pollution 	Unit I: Basic Concept of Air pollution (5 hours) Basic concepts: Definition, Natural vs. Contaminated A Types of Air pollution: origin, chemical composition a State of Matter; Source of Air pollution; Mode formation of criteria air pollutants (Ozone, COx, NC SOx, Particulate matters): Toxic Air Pollutants; Aeroso	
 To provide knowledge about various type of air pollution control technologies To explain the working principle of air pollution control measures 	Unit II: Air pollution Control Technologies (7 hours) Introduction to Air Pollution Control; Approach to Air PollutionControl: Improve Dispersal (Atmospheric Cleansing Process).Preventive and Control Technologies.	

 To make students able tounderstand the basic concept of Water pollution. To provide scientific knowledge about process behind Water Pollution To explain students about effect of Water pollution To explain students about effect of Water pollution To provide knowledge To provide knowledge 	 Unit III: Basic concept of Water Pollution (5 hours) Properties of Water; Criteria of Safe Drinking water: Drinking Water quality parameters; Water pollution: Cause and Sources (Point and Non-Point sources); Water Pollutants: Types, sources, Mode of Formation; Surface water Pollution: Water pollution parameters: Bio-chemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Nitrification in Surface Water, Deoxygenation Oxygen Sag Curve, Eutrophication, Thermal Stratification, Acidification; Ground Water Pollution: Darcy's law, Flow Velocity, Cone of Depression, Groundwater Plumes and its Effect; Waste water: Types and Source; Characteristics of Municipal and Industrial Wastewater; Environmental Impacts of Water Pollutants; Unit IV: Water Pollution Control Technologies (5
 aboutvarious type of water pollution control measures To familiarize students about various type of water treatment system To study the legal instruments related to water pollution 	hours) Water Treatment System: Municipal Water treatment and Waste Water Treatment; Drinking Water treatment System: Process; Household drinking water treatment methods; Waste water Treatment Methods: Types and General Approaches; Primary Treatment: Working Mechanism; Biological Treatment: Process and general Principal: Advance treatment: Introduction and Principal, Constructive Wetlands; Groundwater Pollution Control methods; Legal and Regulatory Tools for Water Pollution Control; Water Quality Criteria and Guidelines; Water Legislative Tools in Nepal
 To make students able to understand the basic concept of Noise pollution. To provide scientific knowledge about process behind Noise Pollution To explain students about effectof Noise pollution To provide knowledge about various type of Noise pollution control measures 	Unit V: Noise Pollution (8 hours) Sound: Properties (Frequency, Wavelength, Pressure); Noise – How it differs from Sound; Human Sensitivity to Sound; Types of Sound/Pattern of Noise; Source of Noise; Sound Physics: Measurement of Sound Level, Sound Level vs Distance, Inverse Square Law; Environmental Impact of Noise; Noise Pollution Control: Source Control, Path Control and Receiver Control Technologies; Legal and Regulatory Tools for Noise Pollution Control; Noise Control Strategies and Guidelines;

• To make students able to	Unit VI: Soil Pollution (8 hours)
understand the basic concept	Properties of Soil; Role of Soil in Environment; Soil
of Soil pollution.	Pollution: Changes in Soil Characteristics, Sources;
• To provide scientific	Environmental Impact of Soil Pollution: Soil Quality
knowledge about process	Index and Salinity Hazard; Concept of Soil Health;
behind Soil Pollution	Residual Toxicity; Soil Pollution Control Technologies:
• To explain students about	Sustainable Soil Management Techniques, Farmer to
source and effect of Soil	Farmer Diffusion Model, Soil Conservation and Watershed
pollution	Management Modules; Legal and Regulatory Tools for
• To accustom students about	Soil Pollution Control; Waste: Definitions and Concept;
waste and Waste management	Types of waste; source of waste; Municipal Solid waste;
system	hazardous Waste; E-waste; Environmental impact of
	waste; Waste management Issue;

To make students capable Unit VII: Environmental Toxicology (7 hours)

of					
understand the discipline of eco-	Introduction to Toxicology and eco-toxicology; Types of Eco-				
toxicology and fate of	toxicants: Toxic Elements and elemental form, Toxic				
toxicants in environment.	Inorganic compounds, Toxic organic compounds, Radio-				
• To accustom students about	nuclides: Sources, Radioactive decay; Distribution and fate				
effect of toxicants in	of Toxic substances: Types of Toxicity-Acute and chronic				
environment	Toxicity, Persistence, Chemical interaction, Relative				
	Toxicity, Xenobiotic and Endogenous substances,				
	Toxicological chemistry: Phase I and Phase II Reactions,				
	Phases of Toxicants movements; Dose response				
	relationships; Toxic Effects: Independents, Additive,				
	Synergetic, Antagonism, Teratogenesis, Mutagenesis,				
	Carcinogenesis, Estrogenesis; Factors that influence				
	Toxicity, Routes of Exposure; Environmental effects of				
	toxicants: Terrestrial and Aquatic Environments, Effects				
	on Human health; Eco-toxicological Tests; Ecological Risk				
	Assessments: Hazard Identification, Exposure Assessment,				
	Dose response assessment, Risk Characterization;				
	Environmental Toxicity management: Technical				
	Approach, Environmental				
	Regulation				

Text Books:

- 1. De, A. K., 2008. Environmental Chemistry. New Age International Publishers, New Delhi.
- 2. Manahan S. E., 2000. Environmental Chemistry (7th edition). CRC Press, LLC BocaRaton. ISBN 1-56670-492-8 U.S.
- 3. Masters, G.M., 2008. Introduction to Environmental Engineering and Science 4th Edition. Prentice Hall, New Delhi

Reference Books:

- 1. APHA, 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.
- 2. Asthana and Asthana 2010. Environment: Problems and solutions, S. Chand and Company ltd.
- 3. Banerji, S. k., 2003. Environmental Chemistry, Prentice Hall of India Private Limited
- 4. Goel, P.K., 2001. Water pollution: Causes, Effects and Control, New age Internationalpublishers

- 5. Mark, Z.J., 2002. Atmospheric Pollution: History, Science and Regulation. CambridgeUniversity Press, Cambridge.
- 6. Miller, Jr. G.T., 2010. Environmental Science. Thirteen Edition. Brooks/Coles Ceenagelearning, USA
- 7. Sharma, P.D., 1998. Environmental Biology and Toxicology. Rastogi Publications, NewDelhi.
- 8. Sapkota, B., 2004 Fundamental of Noise pollution, Department of Physics, Pulchowkcampus

FAR WESTERN UNIVERSITY Faculty of Science and Technology

Course Title: Modern Algebra Course No.: MTH242 Nature of Course: Theory Level: B. Sc. Year: Second, Semester: Fourth F.M.: 100 P.M.: 45% Credit: 3 Number of hours per week: 3 Teaching Hours: 45

1. Course Description:

This course of Mathematics is designed to gain the knowledge about binary operations, groups, rings and fields as well as system of linear equations and their skills are used in different fields of general and technical sciences. The course emphasizes both theoretical and applicable aspects of groups, rings and fields as well as system of linear equations.

2. Course Objectives:

The general objectives of the course are as follows:

- > To enable the students to gain basic concepts about binary operations, equivalence relations.
- > To enable the students to know about groups, rings and fields.
- > To enable the student to know about system of linear equations.

3. Specific Objectives and Contents of Subject Matter:

Sp	ecific Objectives	Contents in Detail	
*	Discuss about binary operation and algebraic	Unit 01: Equivalence Relations and Classes	6 Hrs
	structure.	Binary operations and algebraic structure	
*	State elementary properties of integrals and	Properties of integers and prime numbers	
	primenumbers.	Equivalence relations and equivalence classes	
*	Define equivalence relation and equivalence	Divisors and greatest common divisors	
	classes.	Prime factors	
*	Define divisors and greatest common divisors.	Unique factorization theorem (without proof)	
*	Discuss about prime factors.	Congruences and residue classes	
*	State unique factorization theorem (not proof).	Related problems	
*	Discuss congruences and residue classes.		
*	Solve some related problems.		
*	Define seimi-groups with examples.	Unit 02: Groups	10 Hrs
*	Define groups with examples.	Introduction of algebraic structure	
*	State some elementary properties of groups (with	Semi-groups	
	proof).	Groups with examples	
*	Define integral power of an element.	Elementary properties of groups	
*	Define sub-group and their properties.	Integral power of an element	
*	Define cosets and order of an element.	Cyclic groups	
*	State and prove Lagrange's theorem.	Subgroups and their properties	
*	Define centralizer and normalizer.	Cosets, order of an element	
		Lagrange's theorem	
		Centralizer, normalizer and related problems	
*	Define permutation group.	Unit 03: Groups (continued)	9 Hrs
*	Discuss about cyclic, even and odd permutations.	Permutation groups	
*	Define normal subgroups, quotient groups and	Cyclic, even and odd permutations	
	theirproperties.	Normal subgroup	
*	Define homomorphism, automorphism and		
	group isom or phism.	Homomorphism	
*	State properties of group homomorphism (with	Kernel and image of homomorphism	
	proof).	Isomorphism and properties	
*	State properties of group isomorphism (with proof).		
*	Solve related problems		
*	Discuss about algebraic structures with two	Unit 04: Rings	9 Hrs
Ι.	binary operations.	Algebraic structures with two binary operations	5
*	Define ring with examples.	Rings with examples	

*	Discuss some special classes of rings.	Special classes of rings		
*	Define integral domain, division ring and field.	Integral domain, division ring and field		
*	State elementary properties of rings (with proof).	Elementary properties of rings		
*	Define Boolean rings, sub-rings and ideals.	Boolean ring		
*	State and prove some theorems on special	Subrings and ideals		
	classes ofrings.	Some theorems on special classes of rings		
*	Define ring homomorphism and isomorphism			
	withproperties.	Ring homomorphism Quotient rings		
*	Define quotient ring.			
*	State and prove first isomorphism theorem for	First isomorphism theorem for rings		
		Maximal ideal of rings		
*	rings. Define maximal ideal of rings.			
*		Unit 05: System of Linear Equations 11 Hrs		
	homogeneous and non-homogeneous linear			
	equations.	System of homogeneous and non-homogenous		
*	Solve the system of homogeneous and non-			
	homogeneous linear equations.	Solution of a system of linear equations		
*	Define rank of matrices related to linear systems,	Rank of matrices related to linear systems,		
		Echelon form, linearly dependence and independence		
	column rank.			
*	State elementary row operations.	Elementary row operations of matrix Rank, properties of rank, row rank and column		
*	State consistency and inconsistency of a system of			
	linear equations.			
*	*	Rank of the product matrices		
*	Solve homogeneous linear equations. Discuss about characteristic equation of a matrix.	Consistency and inconsistency of a system of		
*	State Caley-Hamilton theorem for a square matrix	linear equations		
		Solution of non-homogeneous system of		
*	(without proof).	equations by using inverse		
*	Solve some related problems.	Solution of homogeneous linear equations		
		Characteristic equation of a matrix		
		Caley-Hamilton theorem for a square matrix		
		(without proof)		
		Related problems		

4. Evaluation System:

External Evaluation	Marks	Internal Evaluation	Weightage	Marks
End semester examination	60	Assignments	10%	
(Details are given in the separate table at the end)		Quizzes	10%	
		Attendance	10%	
		Presentation	10%	$\overline{}40$
		Term papers	10%	
		Mid-Term exam	40%	
		Group work	10%	7
Total External	60	Total Internal	100%	40

(I). External evaluation

End semester examination: It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Self-study
- Assignments
- Presentation by Students
- Term Paper writing
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

5. Prescribed Books and References:

- i. Linear Algebra R. M. Shrestha and S. Bajracharya, Sukunda Pustak Bhawan
- ii. Algebra I. N. Hertain
- iii. Algebra Dr. Chandika Prasad, Pothishala Pvt. Ltd.
- iv. Algebra Jeevan Kafle, etc
- v. Linear Algebra S. Lang

FAR WESTERN UNIVERSITY

Faculty of Science and Technology

Course Title: Real Analysis II Course No.: MTH241 Nature of Course: Theory Level: B. Sc. Year: Second, Semester: Fourth F.M.: 100 P.M.: 45% Credit: 3 Number of hours per week: 3 Teaching Hours: 45

1. Course Description:

This course aims to enable the students to gain basic knowledge about functions, limit and continuity of function, differentiability and integrability of functions, Riemann integral and fundamental theorem of calculus which are considered to be back bone of real analysis.

2. Course Objectives:

The general objectives of this course are as follows:

- > To enable the students about functions, limits, continuity of functions.
- > To enable the students about basic knowledge of differentiability and continuity and mean value theorem.
- > To enable the students about basic knowledge of Riemann integration and fundamental theorems of calculus.

3. Specific Objectives and Contents of Study:

Sp	ecific Objectives	Contents in Detail
*	Define a function in different forms.	Unit 01: Functions (Revision) 3 Hrs
*	State types of function with description and	Functions and types of functions
	examples.	Composition of functions
*	Define composition of functions.	Inverse of a function.
*	Define inverse of a function.	Meaning of functional values at different points in
*	Discuss about functional values of functions at	realline
	differentpoints in IR.	
*	Define limit of a function at a point on set and on	Unit 02: Limits and Continuity 13 Hrs
	interval.	Limits (definition)
*	Discuss about sequential criterion for limits.	Sequential criterion for limits
*	Define one sided limits.	One sided limits
*	State different properties of limits.	Properties of limits
*	State continuity of function and its sequential	Continuity of functions and sequential criterion
	criterion.	forcontinuity
*	Define discontinuous function.	Discontinuities
*	State continuity in closed interval.	Continuity in closed interval
*	State sign preserving property.	Sign preserving property
*	State and prove Bolzano's theorem.	Intermediate value theorem
*	Define uniform continuity.	Bolzano's theorem
*	State Lipsclritz condition.	Uniform continuity
*	Define monotone function.	Lipschitz condition
*	State and prove continuous inverse theorem.	Monotone function
		Continuity of monotone inverse function

*	Define derivative of a real valued function of	Unit 03: Differentiation 14 Hrs		
	single variable.	Derivative of a function of single variable		
*	Discuss derivative of a function at a point and in an	Differentiability at a point and in an interval		
	interval.	Sequential criterion for derivatives		
*	State sequential criteria for derivatives.	Differentrability and continuity		
*	State relation between differentiability and	Mean value theorems		
	continuity.	- Rolle's theorem with geometrical		
*	State and prove Rolle's theorem, Lagrange's	interpretations		
	mean value theorem, Cauchy's mean value	- LMVT with geometrical interpretations		
	theorem with their geometrical interpretation.	- CMVT with geometrical interpretations		
*		Higher order derivatives		
*	Define monotonic functions.	Monotonic functions		
*	Discuss extreme values of a function.	Extreme values		
*	State and prove Taylor's Theorem.	Taylor's theorem with remainder		
*	State Maclaurin's theorem in finite form and	Maclaurin's theorem in finite form		
	infinite form.	Taylor's and Maclaurin's infinite series		
*	Taylor's theorem in infinite form and applications.	Application of Taylor's theorem in extreme		
		value		
		problems and related examples		
*	Define partition, norm and refinement of partitions.			
*		Partitions and refinement of partitions		
*	-	Bounded functions with examples		
		Upper and lower Riemann sums		
*		Riemann integrable functions		
		Relation between lower and upper integrals		
*	Mention elementary properties of Riemann	Conditions of integrability		
	integrals.	Elementary properties of Riemann integrals		
*	State Riemann integral of step functions.	Riemann integral of step function		
*		Unit 05: Fundamental Theorem of Calculus 4 Hrs		
	State and prove first mean value theorem form			
	Riemannintegrals and its generalized form.	First mean value theorem for Riemann integral		
*	1 0	and its generalized form		
	theoremof Riemann integral.	Generalized second mean value theorem of		
*	1	Riemann integral		
*	State and prove first fundamental theorem of	Primitives and fundamental theorem of integral		
	integralcalculus.	calculus		
*	State and prove second fundamental theorem of	- First fundamental theorem of integral calculus		
	integralcalculus.	- Second fundamental theorem of		
*	Discuss about integration by parts.	integralcalculus		
*		Integration by parts		
*	Solve some related problems.	Change of variable in an integral and related		
	*			
		examples		

4. Evaluation System:

Undergraduate Programs				
External Evaluation	Marks	Internal Evaluation	Weightage	Marks
End semester examination	60	Assignments	10%	
(Details are given in the separate table at the end)		Quizzes	10%	
		Attendance	10%	
		Presentation	10%	40
		Term papers	10%	
		Mid-Term exam	40%	
		Group work	10%	-
Total External	60	Total Internal	100%	40
Full Marks 60+40 = 100	1			1

(I). External evaluation

End semester examination: It is a written examination at the end of the semester. The questions will be asked

covering all the units of the course.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Self-study
- Assignments
- Presentation by Students
- Term Paper writing
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

5. Prescribed Books and References:

- i. Real Analysis P. M. Bajracharya, Buddha Publication
- ii. Mathematical Analysis R. M. Shrestha, Sukunda Pustak Bhawan
- iii. Real Analysis S. M. Maskey
- iv. Mathematical Analysis N. P. Pahari
- v. Mathematical Analysis T. M. Apostol
- vi. Real Analysis Shanti Prasad, S. Chand and Company Ltd., New Delhi