Far Western University Mahendranagar, Kanchanpur Faculty of Science and Technology

B. Sc. First Semester Physical Group

FAR WESTERN UNIVERSITY

Faculty of Science and Technology

Course Title: **Basic Chemistry I** Course No.: **CHM111** Nature of Course: **Theory** Level: **B. Sc.** Year: **First**, Semester: **First** F.M.: 100 P.M.: 45% Credit: 3 Number of hours per week: 3 Teaching Hours: 45

(1). Course Description

The course intends to enable the students to be acquainted with the basic concepts of chemistry, in all three branches physical, organic and inorganic chemistry. Students will be familiarized with the fundamentals of chemistry of states of matter, atomic structure, periodic table and the hydrocarbons.

(2). Course Objectives:

The general objectives of the course are as follows:

- □ To acquaint the students with basic concepts of the chemistry of gaseous, liquid and solid states.
- To enable the students to understand the fundamentals of the elements, atomic structure, the periodic table and the periodic properties.
- □ To enable the students to understand the basic chemistry of hydrocarbons.
- □ To enable the students to appreciate the importance of chemistry in day to day life and value the scientific method of chemical research and investigation.

Specific Objectives	Physical Chemistry Contents
• Explain the differences between ideal	Unit I: Gaseous State (8)
andreal gases.	Ideal and real gases; Ideal gas equation; The gas constant; The Kinetic
• Describe the postulate of Kinetic	theory of ideal gases; The Kinetic gas equation; Deduction of the gas
theory of ideal gases.	laws based on kinetic gas equation (Boyle's law, Charles's law,
• Derive important Gas Laws based on	Avogadro's principle, Graham's law of diffusion, Dalton's law); The
kinetic gas equation.	velocity of gas molecules; Root mean square velocity; Average
• Discuss the basic concepts of	velocity; Most probable velocity; Average kinetic energy of gas
velocity ofgas molecules.	molecules; Molecular interpretation of the temperature.
• Describe different types of the speed	The Maxwell-Boltzmann distribution; Maxwell distribution of speeds;
of gases as well as the collision	Types of average speeds; Pressure of an ideal gas; Collision of hard-
parameters.	sphere molecule (collision diameter, collision frequency, mean free
• Discuss the reason behind the deviation	path, collision density); Deviation of real gas from ideal behaviour;
of ideal behaviour of the gas.	Causes of deviations; Derivation of Van der Walls equation;
• Derive Van der Walls equation.	Explanation of behaviour of real gas from Van der Walls equation;
• Describe critical phenomena of the	Other equations of state; The Virial equation; Boyle's temperature and
gases.	Van der Walls constants, Critical phenomenon; Relation between Van
• Introduce the concept of liquefaction	der. Walls constant and critical constants.
ofgases.	Liquefaction of gases (Linde and Claude processes); Refrigerator;
• Enable the learners to acquire skill of	Liquefaction of air.
solving numerical problems related to	
all	
gas laws.	

(3). Specific Objectives and Contents:

Describe the molecular	Unit II: Liquid State (3)
arrangement of the liquid.	Liquid (classification and molecular arrangement); Liquid state
Discuss the different	(density, diffusion, viscosity, surface tension, evaporation, boiling
characteristics of liquid state such as	point, vapour pressure); Determination of viscosity and surface tension;
density, diffusion, viscosity, surface	Applications of surface tension and viscosity.
tension, evaporation, boiling point,	
vapour pressure.	
Explain the methods of	
.determination of viscosity and surface	
tension.	
\Box Discuss the applications of	
surface tension and viscosity.	
• Explain the difference between	Unit III: Solid State (4)
crystallineand amorphous solids.	Classification (Crystalline and amorphous solids); Types of solids
• Explain the structure and properties of	(metals, ionic crystals, covalent crystals, Van der Waals crystals) and
(metals, ionic crystals, covalent	their properties; Crystal structure; Unit cells and crystal systems;
crystals	Bravais lattices; Cubic
and Van der Waals crystals.	crystals (simple, body centered and face centered cubic crystals); Miller
• Define and describe unit cells and	indices.
crystalsystems.	
• Illustrate and explain different types of	
cubic crystals.	
Explain Bravais lattices and Miller	
indices.	
	Organic Chemistry
Explain the structures of alkanes and	Unit IV: Alkanes (5)
alkane isomers.	Alkanes and alkane isomers; Alkyl groups; Nomenclature of alkanes;
Explain IUPAC system of naming	Properties of alkanes; Conformations of ethane; Conformations of
alkanes.	other alkanes; Cycloalkanes; Nomenclature of cycloalkanes; Cis-Trans
Describe the properties of alkanes.	isomerism in cycloalkanes; Stability of cycloalkanes; Conformations of
\Box Define the term conformation and	cycloalkanes (cyclopropane, cyclobutane, cyclopentane and
discuss conformational analysis of the	cyclohexane); Axial and equatorial bonds; Conformations of mono-
alkanes.	and disubstituted cyclohexanes; Conformations of polycyclic
□Explain the structure, IUPAC	molecules.
nomenclature and geometrical	
isomerism of cycloalkanes.	
\Box Discuss the factors affecting the	
stability of cycloakkanes.	
Discuss the conformational analysis of	
cycloalkanes including mono- and	
disubstituted cyclohexanes and	
polycyclic molecules.	
Explain the structure, industrial	Unit V: Alkenes (6)
preparation, uses, IUPAC	Alkenes; Industrial preparation and uses of alkenes; Calculation of
nomenclature and geometrical	degree of unsaturation; Nomenclature of alkenes; Cis-Trans isomerism;
isomerism of alkenes.	The Sequence Rule (the E,Z designation); Stabilty of alkenes,
\Box Discuss the Sequence Rule of E, Z	Electrophilic addition reactions; Orientation of electrophilic addition
designation.	reactions (Markovnikov rule); Carbocation structure and stability; The
\Box Discuss the electrophile addition	Hammond postulate; Evidence for the mechanism of electrophilic
reactions of alkenes in terms of	addition reaction.
mechanism and orientation.	Preparation of alkenes; Addition of halogens to alkenes; addition of
• Introduce the Hammond postulate and	nyponalous acids to alkenes; Addition of water to alkenes
nighlight its importance.	(Oxymercuration and Hydroboration reactions); addition of carbenes to
Explain different types of preparation	aikenes; Keduction of aikenes; Oxidation of aikenes (Epoxidation,
and reactions of the alkenes.	nyuroxyration and Cleavage to Carbonyl Compounds); Kadical additions to allyanas; Biological addition of redicals to allyanas
	additions to aikenes, biological addition of fadicals to aikenes.

• Explain the structure and	Unit VI: Alkynes (4)
IUPAC nomenclature of alkynes.	Alkynes; Nomenclature of alkynes; Preparation of alkynes; Reactions
• Explain different types of preparation	of alkynes (Addition of HX and X2); Hydration of alkynes;
andreactions of the alkynes.	Hydroboration/Oxidation of alkynes: Oxidative cleavage of alkynes:
• Introduce the role of alkynes in organic	Alkyne acidity and formation of acetylide anions: Alkylation of
synthesis	acetylide anions: Introduction to organic synthesis
synthesis.	accivitate amons, information to organic synthesis.
	Inorganic Chemistry
• Explain the Bohr model of atom and	Unit VII: Atomic Structure, Periodic Table and Elements (15)
itssubsequent refinement.	Electronic stucture of the atom; Bohr theory; Improvement on Bohr
• Explain wave mechanical model of	theory; Wave mechanics; de Broglie's equation; Heisenberg's
atom.	uncertainty principle; Schrodinger's wave equation (time independent);
• Enable the students to write	Physical significance of wave function, Normalization of wave
electronic configuration of atoms.	function; Probability; Density pattern for hydrogen atom; Radial and
• Introduce the students	angular wave functions; Radial distribution curves; Atomic orbitals in
with fundamentals of nuclear	wave machanics; Orbitals (s, p, d, f orbitals); Charge cloud diagrams
chemistry.	and boundary surface diagrams; Nodal planes; Quantum numbers and
• Explain the periodic law and the	their significance; Energy levels in the hydrogen atom; Structure of
periodic table.	atoms with many electrons; Radial penetration of the wave functions;
• Discuss the periodic trend in the	The Aufbau principle; Hund's rule; The Pauli exclusion principle;
periodic table.	Electronic configuration.
• Describe the occurrence and	The nucleus; Subatomic particles; Nuclear stability; Binding
principle	energy;
behind different methods of	Radioactivity; Natural and induced radioactivity; Half-life
extraction and purification of metals	determination and nuclear reactions; Radioactive displacement law and
from its ore.	radioactivity series.
	Periodicity of elements; The preiodic law and arrangement of elements
	in the periodic table; IUPAC system of Periodic Table; s, p, d and f
	blocks; Long form of Periodic Table; General properties of atoms- size
	of atoms and ions- atomic radii; Ionic radii; Covalent radii; Trends in
	ionic radii, ionization potential, electron affinity; Electronegetivity
	(Pauling, Mulliken, Alfred- Rochow definition); Oxidation states and
	variable valency; Isoelectronic relationship; Standard reduction
	potentials; Electrochemical series.
	The occurrence and isolation of elements, Factors influencing the
	choice of extraction process, Mineral benefication-pretreatment, Dense
	medium separation, Flotation process, Solution methods, Magnetic
	separation, Electrostatic precipitation, Thermal decomposition
	methods, Displacement of one metal by another, High temperature
	chemical reduction methods, Reduction by carbon, Reduction by metal,
	Self-reduction, Reduction of oxides by hydrogen, Electrolytic
	reduction in aqueous, non-aqueous and
	tused melts, Thermodynamics of reduction process-Ellingham diagram.

(4). Evaluation System Undergraduate Programs

External Evaluation	Marks	Internal Evaluation	Weight age	Marks	Viva-voce	Weight age	Mark
End semester examination		Assignments	20%		Report and Presentation on any topic	50%	
(Details are given in the separate table at the end)	60	Quizzes	10%	20	Presentation	25%	20
		Attendance	20%		Viva	25%	
		Internal Exams	50%				

Total External	60	Total Internal	100%	20	100%	20
Full Marks $60+20+20 = 10$	00					

(I).External evaluation:

End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

External Evaluation (Viva):

After completing the end semester theoretical examination, viva examination will be held. External examiner will evaluate report/presentation & take viva exam and will do above mentioned evaluation. Students should make a small report by relating any of the studied topics in the subject to some application areas/examples. Reports can be made in groups. There will be an internal examiner to assist the external examiner. In this examination Students must demonstrate the knowledge of the subject matter.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment willbe seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- Lecture and Discussion
- Group work and Individual work
- Assignments
- Presentation by Students
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

(5). Prescribed Texts:

- 1. S. H. Maron, C. Prutton, Principles of Physical Chemistry, Oxford and IBH Publication and Co., 1992.
- 2. John Mc Murry, Introduction to Organic Chemistry, Brookes/Cole, 2007.
- 3. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, John Wiley and sons. Inc., 2007.

(6). Reference

- 4. F. Daniels, R. F. Alberty, Physical Chemistry, John Wiley & Sons, Latest Edition.
- 5. Gilbert. W. Castellan, Physical Chemistry, Narosa Publishing House, 1985.
- 6. R. T. Morrison, R. N. Boyd, Organic Chemistry, Prentice- Hall of India Pvt. Ltd., 2008.
- 7. J. S. H. Pine, Organic Chemistry, McGraw Hill International Edition Series, New York, USA, 1987.
- 8. F.A. Cotton, G. Wilkinson, C. Gaus, Basic Inorganic Chemistry, John Wiley & Sons (Asia) Pvt. Ltd., 2007.
- 9. D. F. Shriver, P. W. Atkins, Inorganic Chemistry, W. H. Freeman and Co., London, 1999.
- 10. B. R. Puri, L. R. Sharma, K. C. Kalia, **Principles of Inorganic Chemistry**, Shoban Lal Nagin Chand and Co., Delhi, India, 1996.

FAR WESTERN UNIVERSITY

Faculty of Science and Technology

Course Title: Chemistry Lab I Course No.: CHM111 Nature of Course: PracticalLevel: B. Sc. Year: First, Semester: First

(1). Course Description

The course intends to enable the students to be skilful in the basic chemical laboratory techniques. Students will be introduced to scientific method of experimentation. Students will develop skill on performing an experiment, observing and recording results and judiciously interpreting the results.

(2). Course Objectives

The general objectives of the course are as follows:

- □ To enable students to perform experiments on liquid properties of matter.
- □ To enable the students to develop basic analytical skill on organic qualitative analysis.
- □ To enable the students to develop basic analytical skill on inorganic qualitative analysis.

S. Specific Objectives and Contents	
Specific Objectives	Contents
 Enable the students to undertake experiments on surface tension and viscosity and interpret the results obtained. Enable the students to perform an experiment on Rast method to determine the molecular weight of an organic compound. 	 Physical Chemistry Content Determination of surface tensions of two liquids supplied with the help of a Stalagnometer and interpret the result. Determination of the viscosity of two liquids with the help of a Ostwald'sviscometer and interpret the result. Organic Chemistry Content Determination of melting and boiling points of organic compounds. Determination of mixed melting point.
 Enable the students to perform experiments on boiling point determination. Enable the students to perform experiments on foreign elements detection and test for aliphatic and aromatic nature in organic compounds. Enable the students to purify organic compounds by means of crystallization, distillation, sublimation and filtration. Enable the students to determine the functional groups according to the solubility of the compounds. Enable the students to calibrate the volumetric kits and prepare standard solutions Enable the students to perform experiments on acid- base and redox titrations. 	 Detection of N, S and halogens. Test for aliphatic and aromatic nature of organic compounds Purification of organic compounds by crystallization, distillation, sublimation and filtration. Determination of functional groups present in organic compounds basedon solubility. Inorganic Chemistry Content Calibration of volumetric kits: burette, pipette and standard flasks. Preparation of Standard solutions. Experiment on acid – base titrations;

(3). Specific Objectives and Contents

Credit: 1 Number of hours per week: 3

(4). Textbooks and Reference Books

David P. Shoemaker, Carl W. Garland, Joseph W. Nibler, Experiments in Physical Chemistry, 5th edition,

McGraw-HillBook Company, 1989. (Latest Edition).

- 🗆 B. P. Levitt, ed. Findlay's Practical Physical Chemistry, Longman, London, 1973. (Latest Edition)
- □ J. N. Gurtu, R. Kapoor, Advanced Experimental Chemistry (Vol I III), S. Chand and Co., New Delhi, India, 1989. (Latest edition).
- □ B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchel, Vogel's Text Book of Practical Organic Chemistry, 5th Edition, Person Education, 2005.
- L. Shriner, R. C. Fusion, D. Y. Curtin, The Systematic Identification of Organic Compounds, A Laboratory Manual, John Wlley and Sons Inc, New York, USA, 1980. (Latest Edition).
- N. S. Gnanapragasam, G. Ramamurthy, Organic Chemistry Lab Manual, S. Viswanathan Co., Pvt., India, 1998.
- □ Vogel's Text Book of Inorganic Qualitative Analyses, 4th Edition, ELBS, London, 1974. (Latest Edition).
- Moti Kaji Sthapit, R. R. Pradhananga, Experimental Physical Chemistry, Taleju Prakasan, Kathmandu, Nepal, 1998.
- □ K. N. Ghimire, M. R. Pokhrel K. P. Bohara, University Experimental Inorganic Chemistry, Quest Publication, Kirtipur, Kathmandu, Nepal, 2008.

FAR WESTERN UNIVERSITY

Faculty of Science and Technology

Course Title: Calculus Course No.: MTH111 Nature of Course: Theory Level: B. Sc. Year: First, Semester: First F.M.: 100 P.M.: 45% Credit: 3 Number of hours per week: 3 Teaching Hours: 45

(1). Course description

The course aims to acquaint the students with basic concept of Limit, continuity and derivative which is considered to be the cornerstone of Calculus. After in-depth study of these terms students will be able to understand the subject matter and find its applications.

(2). Course objectives

The general objectives of the course are as follows:

- \Box To acquaint the students with basic concepts of limit, continuity and derivative.
- □ To enable the students to understand the applications of Differentiation and Integration.
- □ To enable the students to understand the application of integration in applied mathematics, physics and Biological sciences.

Specific objectives	Contents in Detail			
• Explain the meaning of limit continuity and	Unit 1. Limit and Derivative (7 hours)			
derivative.	Rate of change and limits (Review)			
• Clarify the concept of limits and continuity to	Calculating the limits using limit laws (Review)			
understand calculus in better way.	The precise definition of limits and continuity (Review)			
• Explain the equation of tangent to a curve at	One sided limit and limit at infinity (Review)			
any point and then derive the equation for	The Derivative as a function (Review)			
cartesian subtangent, subnormal and their	The Derivative as a rate of change (Review)			
length.	Infinite limits and horizontal and vertical Asymptotes			
• Define and derive the Arc length in Cartesian	ian Tangent and Normal			
form.	Equation of tangent to the curve at any point (Review)			
• Obtain the polar equation to a curve.	Cartesian subtangent, subnormal and their length			
• Enable to student knowing about the precise	Derivative of Arc length in Cartesian form			
definition of pedal equation and able to derive	Polar equations to curve			
pedal equations of same curves.	Derivative of Arc length in polar form			
	Pedal equation of some special curves			
• Discuss the meaning of successive derivative of	Unit 2: Higher Order Derivatives(3 hours)			
a function with notation.	Successive derivatives of some typical functions			
• Could be able to compute higher order	Leibnitz theorem (with proof)			
derivative of some special functions.	Application of Leibnitz theorem			
 Derive the Leionitz theorem. Discuss the applications of successive 				
derivatives.				
• Introduce the extreme values of a function of	Unit 3: Application of Differentiation(9 hours)			
two orthree variables with conditions.	Extreme values of a function of two or three variables			
• Compare the difference between various Mean	The Mean value theorems (Revision)			
Valuetheorems.	Taylor's theorem with Cauchy's forms of remainder			
• Discuss the Taylor's theorem.	Taylor's series			
• Differentiate between Taylors and Maclurins	Maclurins series of trigonometric, exponential			
• Explain the concept of derivative to sketch the	and logarithmic functions			
various curves	Applications of mean value theorems to monotonic			
• Describe the concept of Derivative for	Current alter the second secon			
obtaining solutions in optimization problems.	Applied entimization problems			
• Explain the method for estimating a solution of	Newton's method			
an equation $f(x) = 0$ is to produce a sequence of				
approximations that approach the solution.				

(3). Specific objectives and course contents

•	Explain the difference between indefinite and definite integral. Explain the properties of definite integral and use it for the even and odd functions. Discuss various cases of improper integral ad properties of Beta and Gamma function. Describe the method for obtaining reduction formula for the trigonometric function of higher order.	Unit 4: Integration(5 hours)The definite integral (Review)(5 hours)The properties of definite integralReduction formulaFundamental theorem of calculus(6 hours)Improper integrals(6 hours)
•	Explain the derivation for volume of a solid of revolution and surfaces of solid of revolution. Describe how the concept of definite integral canbe applied for moments of centre of mass. Assess the applications definite integral in Physics, Engineering and Biology.	Area between curves (Review) Volumes and surface Arc length Moments and centre of mass Work Applications to physics, Engineering and Biology
•	Discuss various problems that can be formulated mathematically as differential equation. To prove an existence uniqueness theorem and determined all solution by explicit formula. Discuss the non-homogeneous equation of the form $y'' + ay' + by = R$ and its solution obtained by operating with an operator L. Describe the method of solving simple harmonic motion, Damped vibrations, Electric circuit, motion of rocket with variable mass.	Unit 6: Differential Equations(7 hours)Linear differential equation (Review)Some physical problems leading to first order lineardifferential equationLinear equations of second order with constant coefficientsExistence of solution of the equation $y'' + by = 0$ Reduction of the general equation to the special case $y'' + by = 0$ Uniqueness theorem for the equation $y'' + by = 0$ Complete solution of the equation $y'' + by = 0$ Non homogeneous linear equation of second order withconstant coefficientsSpecial method for determining a particular solution ofthe no homogeneous equation $y'' + ay' + by = R$ 6.5Some geometrical and physical problems leading to firstorder equation
•	Explain the algebraic and order properties of R. Introduce the meaning of absolute value to solve many properties on R. Explain the definition of l u b and g l b and its further uses to understand the suprimum and infimum of a set. Describe the various applications of suprimum and infimumproperty.	Unit 7: The Real numbers(8 hours)Algebraic and order properties of RAbsolute value and real lineThe completeness property of RApplication of the suprimum or infimum property

(4). Evaluation System:

Undergraduate Programs				
External Evaluation	Marks	Internal Evaluation	Weightage	Marks
End semester examination	60	Assignments	10%	
(Details are given in the separate table at the end)		Quizzes	10%	
		Attendance	10%	
		Presentation	10%	40
		Term papers	10%	
		Mid-Term exam	40%	
		Group work	10%	
Total External	60	Total Internal	100 %	40
Full	Marks 60+	-40 = 100		

(I). External evaluation

End semester examination: It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignmentwill be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the

classroomdiscussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- □ Lecture and Discussion
- \Box Group work and Individual work
- □ Self-study
- □ Assignments
- Presentation by Students
- □ Term Paper writing
- Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

(5). Prescribes Books and

ReferencesPrescribed Books

- 1. Apostol, T.M. (2011), Calculus (Volume I). IInd Edition. Wieley India.
- Strauss M. J., G. L., Bradley and K.J. Smith, (2007)., Calculus. (3rd edition) Dorling Kindersley (India) Pvt. Ltd, (Pearson Education), Delhi.
- 3. Thomos G. B. and R. L. Finney (2007, Calculus. Pearson Education, New Delhi.

References

- 1. Bartle G.R. and Donald R. Sherbert (2002), Introduction to Real Analysis, John Wiley and Sons, New Delhi.
- 2. Anton H,. I. Bivens and S. Davis (2002) Calculus (7th edition) John Wiley and Sons
- 3. Stewart, J., Calculus with early Transcendental Functions, (6th Ed) Cengage Learning India, Delhi.

FAR WESTERN UNIVERSITY Faculty of Science and Technology

Course Title: English Grammar and Composition Course No.: C. ENG. 111 Nature of Course: Theory Level: B. Sc. Year: First, Semester: First F.M.: 100 P.M.: 45 Credit: 3 Number of hours per week: 3 Teaching Hours: 48

(1). Course Introduction

This is a compulsory English course for B. Sc. students irrespective of their major subjects. The course exposes the students to the basic grammar that they require in their day-to-day academic settings at the undergraduate level. The grammar is introduced in context through the texts and further practice is provisioned through exercises. The course also helps students sharpen their reading and writing skills through various texts and composition exercises. Additionally, the course will also introduce critical thinking skills and they will be given opportunities to practice those skills in class through a variety of texts and tasks.

(2). Objectives

General objectives of this course are to:

- a) help students produce grammatically correct English
- b) develop writing skills for the academic work at undergraduate level
- c) expose them to the variety of reading texts
- d) give them practice in writing exercises
- e) introduce them to the academic vocabulary items used in academic settings
- f) develop in students the ability to think critically

(3). Contents in detail with Specific Objectives

Specific Objectives	Contents in Detail	
• Make sentences using appropriate tenses in	Unit 1: Grammar	(20
speechand writing	Tenses	hours)
• Use modals in the correct syntagmatic patterns	Modals	,
• Supply correct prepositions, adjectives and	Determiners pronouns and noun phrases	
adverbs	Prepositions, adjectives and adverbs	
• Use the right verbs in the given contexts	Verb structures	
•Use conditionals, clauses, questions in the	Word formation	
givencontexts	Conditionals, clauses, questions, indirect speech	
c .	Sentences and varieties of English	
• Predict and preview texts using a variety of	Unit 2: Reading	(10
strategies	Prediction and previewing skill	hours)
• Read for main ideas	Skimming skill	
• Read and comprehend different text types	Reading for comprehension	
• Read for details	Reading for details	
 Locate specific information in texts 	Scanning skill	
• Use graphic organizer to comprehend the	Reading strategies	
texts	Reading sources	
 Identify source of information 		
• Develop and analyze paragraphs of different	Unit 3: Writing	(10
genres	Paragraph writing	hours)
 Plan and make outline for writing 	Preparing outlines	
• Revise, edit and rewrite	Process writing: plan, draft, revise, edit	
• Write summaries	Summary writing	
• Write personal response to the texts	Responding to texts	
Write different letters	Writing letters	
• Write different types of essays	Writing essays	
• Use dictionary to find meaning	Unit 4: Vocabulary	(10 hours)
• Identify different types of information in the	Using a mono-lingual dictionary	
dictionary	Differentiate literal meaning and idiomatic mean	ing
• Use academic words in their writing	Learning selected words from the Academic Wo	rd List
• Find appropriate meaning of new vocabulary	(AWL)	

indifferent contexts	Guessing meaning in contexts Learning phrasal verbs	
Use phrasal verbs in the given contextsAnalyze the composition of words	4.6. Understanding the composition of words and pl	hrases
 Explain ideas to demonstrate comprehension Reflect on the ideas in the texts Connect ideas across texts or readings Relate personal experience to the topic Synthesize information from texts and personalexperience Evaluate experiences and events Consider social responsibility on various levels 	Unit 5: Critical Thinking Comprehension skills Reflection on the ideas in the texts Connecting ideas across texts or readings Relating personal experience to the topic Synthesizing skills Evaluating experiences and events Considering social responsibility on various levels	(5 hours)

(4). Evaluation System:

External Evaluation	Marks	Internal Evaluation	Weightage	Marks
End semester examination	60	Assignments	10%	
(Details are given in the separate table at		Quizzes	10%	7
the				
end)				
		Attendance	10%	40
		Presentation	10%	
		Term papers	10%	
		Mid-Term exam	40%	
		Group work	10%	
Total External	60	Total Internal	100%	40

(I). External evaluation

End semester examination: It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- □ Lecture and Discussion
- Group work and Individual work
- □ Self-study
- □ Assignments

- □ Presentation by Students
- Term Paper writing
- □ Quizzes
- □ Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

(5). References

- 1. Gramer, M.F. and Ward, C. S. (2011). Q: Skills for Success (Reading and Writing) 3. New York. Oxford University Press. (All Units)
- 2. Lloyd, M. and Day, J. (2011). Active Grammar, Level 3. Cambridge. Cambridge University Press. (Unit I)

(6). Dictionary

Hornby. A.S. (2010). Eighth Edition. Oxford Advanced Learner's Dictionary. Oxford: Oxford University Press.

FAR WESTERN UNIVERSITY Faculty of Science and Technology

Course Title: Fundamentals of Environmental ScienceCourse No.: ENV 111

Nature of the Course: Theory Level: B.Sc. (Undergraduate) Year: First,

Semester: First

Total Credit: 3

Instruction hours/week: 3

1. Course Description

The course intends to provide basic theoretical and practical knowledge on Fundamental aspects of Environmental Science. The course has been divided into five units. The first unit deals with Concept, development and scope of Environmental Science. The second unit focuses on Ecology, its associated components and Microbial Ecology. The third unit deliberates basic knowledge on Population and Community Ecology and its application. The fourth unit put emphasis on Concept and types of ecosystem and Pattern of energy flow in Ecosystem. While the fifth unit focuses on interrelation between Environment and Human Society and use of sociological and anthropological knowledge and practices on environmental conservation.

2. Course Objectives

The general objectives of the course are as follows:

- To acquaint the students with fundamental aspects of environmental science.
- To familiarize with environment and environmental science
- To give knowledge on ecology and ecosystem
- To develop analytical skills on Population and community analysis.
- To make familiar about the human interaction with environment

Specific Objectives	Contents	
• Provide knowledge on concept, historical development, Scope and importance of Environmental Science.	Unit 1: Environment and EnvironmentalScience5 hrs	
 Familiarize with environmental science and its interrelation with other disciplines. 	Definition, concept and perspectives; historical development; objective, scope and importance; relationship between environmental science with other disciplines; environmental science in Nepalese and global context	

3. Specific Objectives and Contents

• Discuss about concept, branches and	Unit 2: Ecology
environmental science and ecology.	10 hrs
• Describe about life supporting systems; ecological factors; limiting factors.	Ecology: Definition, preview, branches and scope of ecology; relationship between ecology and environmental science; concept of ecosystem; life supporting systems; ecological factors; limiting
• Explain about food chain, food web, trophic structure and ecological pyramids	factors; laws of limiting factors; ecological basics: terminologies, concept of food chain, food web, trophic structure, ecological pyramids; concept of niche and habitat
• Highlight on concept of niche and habitat	Microbial Ecology: Distribution of microorganisms in the environment: bacteria, cynobacteria, actinomycetes, fungi, algae, and
• Discuss Distribution of microorganisms in the environment; characteristics of bacteria, cynobacteria, actinomycetes, fungi, algae and protozoan and factors affecting growth of microorganisms.	protozoan; factors affecting growth of microorganisms; air, water, soil and food microbes; microbial interaction; concept of bioremediation and biosensors; microbes and human health, Use of microbes as biofertilizer and biopesticides.
• Provide Knowledge on microbial interaction and concept of bioremediation and biosensors.	
	Unit 3: Population and Community Ecology
• Describe Characteristic of population; theory of population growth and population dynamics	10 hrs
 Discuss the concept, characteristics and structure of communities. Develop analytical skills on Population and community analysis. 	Population: Basic concept of population ecology; population characteristics; theory of population growth; population dynamics; population regulation.
• Explain the meaning of Species interaction; explain their types with examples and their importance.	and structure; species interaction: positive and negative; linkage population, community and environment

• Explain the concept, meaning and different types of ecosystem.	Unit 4: Ecosystem 15 hrs
• Describe characteristic features and components of ecosystems.	Ecosystem: concept and types; terrestrial and aquatic ecosystems; structure and functional aspects of pond and forest ecosystems; biogeochemical cycle: gaseous, sedimentary and
 Highlight the structure and functional aspects of pond and forest ecosystems Describe the meaning and mechanism of 	hydrological; energy flow; succession; productivity: primary and secondary
 Describe the meaning and mechanism of biogeochemical cycle. Discuss about the Energy flow process on 	
ecosystem and its role in ecological balance.	
• Explain meaning and concept of succession and trend of succession.	
• Describe different types of productivity and its measurement techniques.	
• Describe about development of human civilization and their socio-cultural	Unit 5: Environment and Human Society
perspective regarding environmental resources.	Environmental resources and socio-cultural perspective: human civilization and resources:
• Explain about nexus population growth and environmental degradation.	nexus population growth and environmental degradation: use of sociological and
• Discuss the use of sociological and anthropological knowledge and practices on environmental conservation.	anthropological knowledge and practices on environmental conservation; environmental sustainability; approach and principles;
• Explain the meaning of environmental sustainability: approach and principles	environmental world views and ethics
• Highlight the environmental world views and ethics.	

Text Books :

- 1. Miller, Jr. G. T. (2003). Living in the Environment: Wadsworth Publication.
- 2. Odum, E. P. (1996). Fundaments of Ecology: Saunders Company, USA

3. Sharma .P.D. Ecological and Environmental. Rostogi Publication, India **References:**

1. Cunningham, W.P & Cunningham, M.A. (2004). *Principles of Environmental Science: Inquiry and Applications,* Second Edition. Boston: Mc Grow Hill.

2. Kormondy, E. J. (1996). Concepts of Ecology: Prentice-Hall of India, New Delhi.

3. Odum, E. P. and Barrett, G. W. (2005). *Fundamentals of Ecology*, 5th Edition, Saunders Company, USA.

4. Richard T. (2008). Environmental Science, Toward a Sustainable Future, PHI (P)

Limited, India

- 5. Santra, S.C. (2004). Environmental Science, New Central Book Agency (P) Ltd. India.
- 6. Sharma .P.D. Ecological and Environmental. Rostogi Publication, India
- 7. Francis A. (1982). *Modern Sociological Theory: An Introduction*, Oxford University Press, New Delhi
- 8. Pelczar M.J. 2010. *Microbiology, An Application based approach*, second reprint, 2010 , Tata McGraw-Hill Co, New Delhi.

FAR WESTERN UNIVERSITY Faculty of Science and Technology

Course Title: Fundamentals of Environmental Science

Course No: ENV 111 Year: First Semester: First Nature of Course: Practical

Total Credit: 1

Practical No.

- 1. Enumeration of floral and faunal diversity of terrestrial ecosystem
- 2. Measurement of population and community parameters: density, frequency, abundance, community composition, similarity index, species-area-curve, minimum number of sampling units, species diversity of vegetation and animals by quadrat method.
- 3. Measurement of primary productivity (using different methods)
- 4. Biological analysis of soil from grassland/cropland/forest ecosystems
- 5. Instrumentation and working principle: compound microscope, hot air oven, autoclave, incubator, biological safety cabinet, water bath and related instruments
- 6. Analysis of bacterial population (staining, enumeration)
- 7. Visit to nearby forest /grassland ecosystem to enumerate floral and faunal diversity
- 8. Visit to nearby health post/Municipality/DDC to assess the environmental administration and management system.
- 9. Visit to human settlement area for socio economic and cultural study and prepare a project report.

Some major points related to aforementioned practical:

1. Students have to carry out *one day field visit* to nearby national park/wildlife reserve for conducting practical number **1**, **2**, **7 and 9**. Since the field work is for complete academic purpose. For this purpose University will have to support students for necessary transportation cost. Total two separate field visits will be held. First field visit will address practical number 1, 2, 7 and second field visit will address practical number 9.

2. Students have to prepare a field report for practical no. 8 and 9 and submit during practical examination.

3. Students have to submit a field note book of all field visits during practical examination.

FAR WESTERN UNIVERSITY

Faculty of Science and Technology

Course Title: Information Technology Fundamentals Course No.: COM. 111 Nature of Course: Theory Level: B. Sc. Year: First, Semester: First F.M.: 100 P.M.: 45 Credit: 3 Number of hours per week: 3 Total Hours: 45

(1). Course Introduction

Fundamental concept of Information technology, Computer systems, computer hardware and Software, input, output and storage devices, Binary system, programming languages, Data files and DBMS, fundamental concept of telecommunication, networking and internet and application of computer systems.

(2). Objectives

This course introduces fundamental concepts of Information Technology and Computer Systems.

Specific Objectives	Contents		
• What is data and information?	Unit I: Computer Concepts (4 Hrs)		
• Describe processing cycle.	Ideas of Information, Information Processing and Data.		
• Describe what is hardware and software.	The Data Processing Cycle. Examples of computer		
• Understand the evolution of computers, from	applications. Definition of Hardware: broad classes of		
refining of abacus to supercomputers.	computers (mainframe mini and microcomputers) and		
• Understand the advancement in technology that	networks Computer programs. The computer as a		
has changed the way computers operate,	networks. Computer programs. The computer as a		
efficient, size, and cost.	programmable device. Classes of software (system and		
• Classify different computers, networks,	application). Programming languages: purpose, facilities		
software's	and common examples.		
• Understand computer programming languages			
Classify different programming languages			
• Understand the purpose of programming			
languages, facilities and various common			
examples.			
• Understand the basic units of computer system	Unit II: Computer Hardware (4 Hrs)		
(Anatomy of a Digital Computer)	The Central Processing Unit (Control Unit, Arithmetic		
• Understand how the basic digital computer is	and Logic Unit, Main Memory). Peripherals. The		
organized	organization of a simple computer. The storage of		
• Describe the purpose of basic units of computer	programs and data. Data and Control paths in the		
Systems.	Unit III: Data (2 Har)		
 Learn about the digital symbols, base. Understand with the acding schemes for the 	Unit III: Data (2 IIIS) Its Depresentation and Input: The Stages (collection		
internal storage of characters	Depresentation and input. The Stages (concertion,		
• Understand what are on-line and off-	Preparation, verification, input methods). Input Devices		
line peripherals and data	and Media. On-line and Off-line peripherals. Verification		
 Understand what is verification and validation 	and Validation methods.		
ofdata			
• Familiarize with the various types of input	Unit IV: Input Devices (2 Hrs)		
devices along with their advantages.	Description of common input devices and media (such as		
disadvantages, and applications.	keyboards light pens mice magnetic strine readers		
<i>C</i> / 11	nunchedmedia magnetic and ontical character		
	recognition mark		
	readers), including simple physical principles of		
	operation		
	and practical applications.		

•	Familiarize with the various types of output	Unit V: Output Methods, Devices and Media (2Hrs)
	devices to get desired result that may be in	Description of Displays, Printers, Plotters and Computer
	various from viz text, graphics, audio, and	Output on Microfilm, including simple physical
	video; along with their advantages,	principles of
	disadvantages, and applications.	operation and applications.
•	Understand the purpose of memory.	Unit VI: Computer Storage (4 Hrs)
•	Familiarize with the different category of	Levels of storage: register, main and backing store. Units
	memories, units of storage, access time.	of storage (bytes and words) and capacities (Kbytes,
•	Discuss various types of primary and	Mbytes, Gbytes and TBytes). Definition of Access Time.
	organization	Principles of construction of magnetic tape drives,
	organization.	magnetic disc drives (floppy and hard drives), CD-ROM
		and DVD; recordable and rewritable compact discs: CD-R
		and CD-RW.
•	Learn about the binary number system and its	Unit VII: The Binary System (5 Hrs)
	advantages.	Reasons for employing binary in a computer. The
•	Representation of various number systems,	advantages and disadvantages of binary. The binary
	methods of number system conversions.	representation of numbers, characters and program
•	Specify the rules to perform four principle	instructions. Octal and Hexadecimal forms. Conversion
	arithmetic operations- addition, subtraction,	between decimal, binary, octaland hexadecimal
	multiplication, division of binary numbers with	integers. Binary addition. Arithmetic
_	Define two types of real numbers viz fixed	functions intwo and three variables. Truth Tables, Ualf
	point representation floating point	adder and Full-adder logic Logic diagrams
	representation: within floating point(non-	adder and i un-adder logie. Logie diagrams.
	normalized and normalized) and their	
	representations in computer memory	
•	Understand truth table and half-adder and full-	
	adder operations	
•	Discuss the prominent concepts to natural	Unit VIII: Programming Languages(7 Hrs)
	languages and computer languages.	Ideas of generations of programming languages: fourth
•	Acquaints with the different generations of	generation (4GL), third generation ('high level'),
	and disadvantages	assembly and binary machine code. Suitable applications
_	Flaborates the stages required during translation	nrograms - compilers interpreters and assemblers: source
	process (HLL, Assembly language to machine	code and object code. The concept of 'visual' languages.
	code).	Java and the platform independence of its programs. The
•	Understand the concept of visual programming	concept of operating system, functions of operating
	language and platform independent.	system, component of operating system, types of
•	Outlook on the basic role of operating	operating system. An overview of UNIX operating
	system inmodern day computers;	system.
•	Learn about the different types of operating	
_	systems; Drovide on eventions of UNIX/UNIUX	
	operating system	
•	Understand the concept behind database file	Unit IX: Data Files (4 Hrs)
	record, field and character.	Definitions of file, record, field and character. The
•	Understand different types of data files and	concepts of file organization file access and file
	accessmethods.	processing (updating). The main types of data file such as
		master and transaction. Serial, sequential and indexed
		sequential organization. Direct access and serial access.
		Updating sequential (tape or disc) files and indexed
		sequential files. Concepts of a simple database.

•	Explain the computer related terms,	Unit X: Simple Telecommunications (4 Hrs)
	communication networks, and flow of	Serial and Parallel transmission compared. Simplex, Half-
	information through different forms of channel.	duplex and Duplex modes. Modems and Multiplexors.
•	Understand the concept of serial and parallel	Simple Interfaces. Character Codes. Basic
	transmission, different transmission modes.	communications facilities and the concept of bandwidth.
•	Understand the various applications of	Unit XI: Common Applications of Computer Systems
	computer systems in different organizations in	(4 Hrs) Non-technical descriptions
	terms of purpose, hardware, data, processes,	(purpose, hardware, data, processes,
	outputs, advantages and limitations.	outputs, advantages and limitations) in banking,
		education, engineering, police, hospitals, credit
		reference,
		meteorology, airline reservation and stock control.
•	Describe computer networks and its various	Unit XII: Networking and the Internet (6 Hrs)
	types.	Concepts of Local Area Networks, Wide Area Networks
•	Discuss various computer network topologies.	and
•	Understand the concept of WWW, Internet in	the Internet. Computer network topologies. The World
	terms of their uses, advantages and	Wide Web: the concept, its uses and possible
	disadvantages.	disadvantages. Internet Service Providers. Web pages:
•	Learn about the different browsers and its uses.	construction and access; the role of Hypertext Markup
•	Learn various internet application viz email,	Language (HTML) and Java. The concept of electronic
	FTP.	mail and its basic uses. The basic functions of browsers.
•	Understand fundamental concepts of HTTP	
	and itsuses.	

(4). Evaluation System:

Undergraduate Programs							
External Evaluation	Marks	Internal Evaluation	Weight age	Marks	Practical	Weight age	Mark
End semester examination		Assignments	10%		Practical Note copy	25%	
(Details are given in		Quizzes	10%	1	Viva	25%	1
the separate table at the end)	60			20			20
		Attendance	10%		Experimental	50%	1
		Presentation	10%	1			
		Term papers	10%	1			
		Mid-Term	40%	1			
		exam					
		Group work	10%				
Total External	60	Total Internal	100%	20		100%	20
Full Marks 60+20+20 =	= 100						

(I). External evaluation:

End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

External Practical Evaluation:

After completing the end semester theoretical examination, practical examination will be held. External examiner will conduct the practical examination according to the above mentioned evaluation. There will be an internal examiner to assist the external examiner. Three hours time will be given for the practical examination. In this examination Students must demonstrate the knowledge of the subject matter.

Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester

examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of the assignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Such quizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in the session of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructional techniques is as follows:

- □ Lecture and Discussion
- Group work and Individual work
- □ Self-study
- □ Assignments
- □ Presentation by Students
- □ Term Paper writing
- Quizzes
- □ Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

(5). Recommended Books:

- □ Longmans , **Glossary of Computing Terms, British Computer Society,** ISBN 0582-36967-3 or ISBN 0582-47594-5
- C S French, Computer Science, Fifth edition; Continuum; ISBN 0-8264-5460-7
- Geoffrey Knott and Nick Waites, **Computing**, Third edition; Business Education Publishers; ISBN 1901-888215
- □ Capron and Johnson, Computers: Tools for an Information Age, Eighth edition; Prentice Hall; ISBN 0-13-122723-8
- □ Ray Bradley; Stanley Thornes, Understanding Computer Science, ISBN 0-7487-4046-5
- □ Alexis Leon, Mathews Leon, Fundamentals of Information Technology, Leon TechWorld
- □ V. Rajaraman, Fundamentals of Computers.

FAR WESTERN UNIVERSITY Faculty of Science and Technology Physics I Semester

Credit:	3
Number of hours per	week: 3
Total hours:	45
Full Mark:	100
Pass Mark:	45
	Credit: Number of hours per Total hours: Full Mark: Pass Mark:

(1). Course Description

The course intends to enable the students to be acquainted with the basic concepts of mechanics in Physics. Students will be familiarized with the fundamentals of Laws of motion, Motion under a central force, Gravitational Field and Potential, Rigid Bodies, Elastic Properties, Fluid Mechanics and Simple harmonic motion.

(2). Course Objectives

At the end of this course the students should be able:

- to acquire sufficient basic knowledge in Mechanics
- to apply this knowledge base for studying major courses in physics.
- to solve mathematical problems in related topics.
- to deduce mathematical equations and formulas.

(3). Specific Objectives and Contents

Specific Objectives	Contents
 Explain the differences betweeninertial and noninertial frames Derive and describe the Newton'slaws of motion Describe the dynamics of particlein rectilinear and circular motion Distinguish conservative and Non-conservative forces Describe various conservationlaws of mechanics Explain the motion of variablemass (rockets) Describe collision 	Unit I: Laws of motion (7) Newton's laws of motion in inertial reference frame, Dynamics of particle in rectilinear and circular motion, Conservative and Non- conservative forces, Conservation of energy, liner momentum and angular momentum, Single- stage and multi-stage rockets, Collision in one and two dimensions, cross section
 Describe the nature of central forces and derive their equations Explain two particle central forceproblem Explain the methods of , reduced mass, relative and centre of massmotion Understand and use law of gravitation and Kepler's laws to 	Unit II: Motion under a central force (6) Central forces, Two particle central force problem, Reduced mass, Relative and centre of mass motion, Law of gravitation, Kepler's laws, Motions of planets and satellites, Geo-stationary satellites

describe the motions of planets and satellites	
• Describe a rigid body and	Unit III: Rigid Rodies (7)
itsmoment of inertia	(7)
• Explain the difference	Rotational motion and moment of inertia translation and
between translation and	rotational motion of a rigid body Euler's theorem the Euler
rotational motion of a rigid	
body	angles, Motion of a symmetrical top, the Corlous effect.
• Explain Euler's theorem and	
the Euler angles	
• Formulate equations and	
describe the motion of a	
symmetrical top	
• Explain and use the Coriolis	
effect	
•Explain the elastic	Unit IV: Elastic Properties (7)
properties of material and	
the molecular theory	Elasticity, Small deformations, Hooke's law; Elastic
•Explain small	constants for an isotropic solid, beams supported at both
deformations and Hooke's	ends. Cantilever: Torsion of a cylinder, bending moments
law	and shearing force
•Describe the elastic constants	and shearing force
for anisotropic solid	
•Calculate and explain the	
bending of beams supported at	
both ends and Cantilever	
• Explain torsion of a cylinder	
•Describe bending	
force	
• Explain the kinematics of fluid	Unit V· Fluid Mechanics (7)
flow	
•Derive, explain and use	Kinematics of fluid flow, Continuity equation, Bernoulli's
continuityequation	theorem Streamline and turbulent flow Poiseuille's law
• Define and use Bernoulli's	Revnold's Number Stokes law
theorem	Reynold's Ivanioer, Stokes law
•Explain streamline and	
turbulent flowand use	
Poiseuille's law for determining	
fluid properties	
• Describe the Reynold's Number	
- Explain surface tension	Unit VI: Surface Tension (3)
and its relation to the	Chie VI. Surface Tension (S)
surface energy	Surface Tension and surface energy. Molecular theory.
• Use molecular theory to	Pressure on acurved liquid surface Capillarity
describe the surface tension	ressure on abarved negata surface, cupinanty
• Formulate the excess pressure	
on acurved liquid surface	
• Explain and formulate the	
capillarity action	
• Derive and explain the	
differential equation of	
simple harmonic	

•	motion and its solution, Understand the significance of complex notation Distinguish damped and forced vibrations Use formulations to explain the motion of various SHM: spring and mass system, simple, compound and torsional pendulums,	Unit VII: Simple harmonic motion (8) Differential equation of simple harmonic motion and its solution, Significance of complex notation, Damped and forced vibrations, Examples: spring and mass system, simple, compound and torsional pendulums, Helmholtz resonator, coupled oscillators
	Helmholtz resonator, coupled oscillators	

Undergraduate Programs							
External Evaluation	Marks	Internal Evaluation	Weight age	Marks	Practical	Weight age	Mark
End semester examination		Assignments	10 %		Practical Note copy	25 %	
(Details are given in the separate table at the end)	60	Quizzes	10 %	20	Viva	25%	20
		Attendance	10 %		Experimental	50%	
		Presentation	10 %				
		Term papers	10 %				
	-	Mid-Term exam	40 %				
		Group work	10 %				
Total External	60	Total Internal	100%	20		100%	20
Full Marks $60+20+20 = 100$							

(4). Evaluation System:

(I). External evaluation:

End semester examination:

It is a written examination at the end of the semester. The questions will be asked covering all the units of the course.

External Practical Evaluation:

After completing the end semester theoretical examination, practical examination will be held. External examiner will conduct the practical examination according to the above mentioned evaluation. There will be an internal examiner to assist the external examiner. Three hours time will be given for the practical examination. In this examination Students must demonstrate the knowledge of the subject matter. Each student must secure at least 50% marks in internal evaluation in order to appear in the end semester examination. Failed student will not be eligible to appear in the end semester examinations.

(II). Internal evaluation

Assignment: Each student must submit the assignment individually. The stipulated time for submission of theassignment will be seriously taken.

Quizzes: Unannounced and announced quizzes/tests will be taken by the respective subject teachers. Suchquizzes/tests will be conducted twice per semester. The students will be evaluated accordingly.

Attendance in class: Students should regularly attend and participate in class discussion. Eighty percent class attendance is mandatory for the students to enable them to appear in the end semester examination. Below 80% attendance in the class will signify NOT QUALIFIED (NQ) to attend the end semester examination.

Presentation: Students will be divided into groups and each group will be provided with a topic for presentation. It will be evaluated individually as well as group-wise. Individual students have to make presentations on the given topics.

Term paper: Term paper must be prepared by using computer in a standard format of technical writing and must contain the required number of pages. It should be prepared and submitted individually. The stipulated time for submission of the paper will be seriously taken as one of the major criteria of the evaluation.

Mid-term examination: It is a written examination and the questions will be asked covering all the topics in thesession of the course.

Discussion and participation: Students will be evaluated on the basis of their active participation in the classroom discussions.

Instructional Techniques: All topics are discussed with emphasis on real-world application. List of instructionaltechniques is as follows:

Lecture and Discussion

- Group work and Individual work
- □ Self study
- □ Assignments
- Presentation by Students
- Term Paper writing
- □ Quizzes
- Guest Lecture

Students are advised to attend all the classes and complete all the assignments within the specified time period. If a student does not attend the class(es), it is his/her sole responsibility to cover the topic(s) taught during that period. If a student fails to attend a formal exam/quiz/test, there won't be any provision for re-exam.

(5). Prescribed Texts

- <u>Kittel</u>, C., <u>Knight</u>, W. D., <u>Ruderman</u>, M. A. and <u>Helmholz</u>, A. C., *Berkeley Physics Course, Vol. 1, Mechanics*, McGraw-Hill / Dev Publishers, New Delhi
- Mathur D. S., *Mechanics*, S. Chand (India) Pvt. Limited

(6). References

- Thornton S. T. and MarionJ. B., Classical Dynamics of Particles and Systems, Brooks/Cole
- FrenchP., Newtonian Mechanics, MIT Introductory Physics Series, Viva Bools Pvt Ltd
- HallidayD., ResnickR., Christman J. R. and WalkerJ., *Fundamentals of Physics*, Wiley
- SmithJ., General Properties of Matter, Radha Publishing House
- Feynman, R. P., Leighton, R. B. and Sands, M., *The Feynman Lectures on Physics*, Volume 1, NarosaPublishing House
- Landau L. D. and LifshitzE. M., Mechanics, Elsevier

FAR WESTERN UNIVERSITY Faculty of Science and Technology

Four Years B.Sc. (Physics)Course of Study 2069

Course Title: Physics Practical **Course No.**: PHY 111 **Nature of the Course**: Practical Year: 1 Semester: I Credit: 1

(1).Objectives:

By the end of the course the student should be able to:

- measure correctly the basic physical quantities
 - determine errors in measurements
 - analyze raw data and make valid conclusions
 - validate corresponding theoretical component
 - develop proper laboratory skills
 - design basic physics experiments
 - interpret experimental results and draw logical conclusions
 - relate theoretical concepts to practical skills

(2).List of Experiments:

- 1. To verify laws of probability by throwing one coin, two coins and ten coins.
- 2. From given set of data, calculate the standard deviation, standard error and probable error.
- 3. By using method of least square, draw the best straight line through a set of given data points and find the error in slope.
- 4. To determine the moment of inertia of a flywheel.
- 5. To determine the value of acceleration due to gravity at that place by using Bar Pendulum
- 6. To determine the Young's modulus of the material by bending beam method.
- 7. To determine the surface tension of liquid by Jaeger's method.
- 8. To determine of modulus of rigidity of wire by torsion pendulum/Maxwell's vibration needle.
- 9. To determine the coefficient of viscosity of water by Poiseulle's method.
- 10. Calibration of CRO for the measurement of voltage and frequency

Note:

- Student must perform 6 Hours of lab work (2 Hours x 3 times or 3 Hours x 2 times) every week
- In every semester, at least Eight experiments are to be performed. Additional experiments may be addedsubject to availability of time.
- The practical exam will be graded on the basis of the following marking scheme: In-Semester Evaluation 20 %
 Final Exam Written 60%
 Final Exam Oral 20%

(3). References:

- 1. Arora, C. L., B.Sc. Practical Physics, S Chand and Company Ltd.
- 2. Squires, G. L., Practical Physics, Cambridge University Press.
- 3. Shukla, P. K. and Srivastava, A., 2006, Practical Physics, New Age International (P) Limited, Publishers